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Abstract

This thesis describes a novel approach to the problem of workforce distribution in

dynamic multi-agent systems based on blackboard architectures, focusing especially on

a real-world scenario: the multi-skill call centre. Traditionally, to address such highly-

dynamic environments, diverse greedy heuristics have been applied to provide solutions

in real-time. Basically, these heuristics perform a continuous re-planning on the system,

taking into account its current state at all times. As decisions are greedily taken, the

distribution of the workforce may be poor in the medium and/or long term. The usage

of parallel memetic algorithms, which are more sophisticated than standard ad-hoc

heuristics, can lead us towards much more accurate solutions. In order to effectively

apply parallel memetic algorithms to such a dynamic environment, we introduce the

concept of adaptive time window. Thus, the size of the time window depends upon

the level of dynamism of the system at a given time. This thesis proposes a set of

tools to automatically determine the dynamism of the system, as well as a novel and

precise prediction module based on a neural network and a powerful search method

based on parallel meta-memetic algorithms to cope with complex dynamic systems. To

conclude, we compare our approach with other techniques from the state-of-the-art in

a real-world production environment (Telefónica’s call centre), performing better than

other conventional techniques. We also provide a thorough study of each of the modules

that compose our global solution.
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Resumen

Esta tesis describe un novedoso enfoque para resolver el problema de distribución

de carga de trabajo en sistemas multi-agente dinámicos basados en arquitecturas de

pizarra, enfocándose especialmente en un escenario real: el call center multitarea. Para

abordar este tipo de entornos dinámicos, tradicionalmente se han aplicado diversas

heurísticas voraces que permiten dar una solución en tiempo real. Básicamente, dichas

heurísticas realizan replanificaciones continuamente, considerando el estado del sistema

en cada momento. Como las decisiones se toman de forma voraz sin hacer una plan-

ificación óptima, la distribución de la carga de trabajo puede ser pobre a medio y/o

largo plazo. El uso de algoritmos meméticos paralelos nos puede permitir encontrar

soluciones mucho más precisas. Para aplicar este tipo de algoritmos, introducimos el

concepto de ventana temporal adaptativa. De esta forma, el tamaño de la ventana tem-

poral depende del nivel de dinamismo del sistema en un instante dado. Este trabajo

propone una serie de herramientas para determinar el dinamismo del sistema de forma

automática, así como un novedoso módulo de predicción basado en una red neuronal y

un potente método de búsqueda basado en meta-algoritmos meméticos paralelos para

poder lidiar con entornos dinámicos complejos. Para concluir, comparamos nuestro

enfoque con otras técnicas del estado del arte en un entorno de producción real (Tele-

fónica) obteniendo mejores resultados que el resto de técnicas actuales. También se

proporciona un estudio exhaustivo de cada uno de los módulos.
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Chapter 1

Introduction

1.1 Overview

Over the last years, a gradually-growing interest in parallel and distributed comput-

ing has arisen in computer science. Specifically, this concern has recently guided most

of the research activities towards areas such as parallel and distributed programming,

distributed information systems, and parallel and distributed hardware architectures

and infrastructure. As this tidal wave has swept across many industries, distributed

computing has arisen as the new ubiquitous term. Truthfully, there exists a vast bibli-

ography on parallel and distributed computing (see Chapter 3) although there are still

paths to explore [(16)] [(143)] [(6)].

Furthermore, we perceive a tendency to tackle increasingly complex problems and

application domains, which frequently entail the processing of extremely dynamic data

flows. These demanding environments are usually hard to be efficiently handled by most

of the existing, sequential techniques. In this context, parallel and distributed evolu-

tionary algorithms do not only mitigate this drawback but also present several notewor-

thy characteristics such as robustness, traceability, problem simplification, adaptivity,
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scalability and speed-up.

Nevertheless, it is not always straightforward to synchronise and control the inter-

nal dynamics of parallel and distributed information systems because the representation

of linear problems into sub-problems is not always feasible or a simple task.

Anyhow, parallel and distributed systems should somehow self-improve to attain

high performance. In fact, nowadays, a wide range of studies on adaptive techniques in

parallel and distributed information systems can be found [(37)] [(11)].

A classical, well-suited problem for studying dynamic systems is the problem of

workforce distribution in multi-agent systems. Agents can work for a common goal,

coordinate the plans or draw up a plan for others’ tasks. Although there are many types

of multi-agent systems, we will focus on the blackboard architectural model [(55)] [(81)]

(see Figure 7.2). In other words, we will work on systems with a common repository of

knowledge, the "blackboard", which is iteratively updated by a diverse group of agents.

Figure 1.1: Example of the blackboard architectural model with 8 agents.

The basic variant of a workforce distribution problem, which is related to the family

of assignment problems, requires the assignment of tasks to the agents who have the
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required skills to handle them over time, satisfying a given set of additional constraints

and respecting the dependencies among individual tasks and the differences in the

execution skills of the agents. This problem has multiple variants but, depending on

the dynamism of the system, we can principally distinguish two main scenarios:

1. On the one hand, we can find short-term planning environments in which a

continuous planning is needed due to the high dynamism of the system. These

solutions attempt to distribute the workload among agents by applying “basic” ad-

hoc heuristics, looking at the current situation (without predictions or predictions

for a short time-frame). This feature can be effortlessly seen in workload allocation

within a dynamic multi-skill call centre [(15)].

2. On the other hand, we can find long-term planning systems in which the list of

tasks is predefined and known by all agents like in the classic scheduling problem

[(28)]; or environments in which a single task type is assigned to each agent for

a long period of time, similarly to the job assignment problem [(36)]. In other

cases, agents are assigned to patterns of tasks, instead of specific tasks (such as in

pattern-based scheduling [(28)]). Analogously, stable multi-skill call centres [(15)]

can be also included in this group. These solutions consider stable behaviour over

time, anchored in historical data and apply more complex algorithms to match

agents and task types. However, when having a dynamic system, these approaches

cannot be efficiently applied, since an adaptive method is required.

The problem is clearly a dynamic optimisation problem with constraints, so that

our proposal is thus encapsulated in the first scenario: dynamic systems. We put

forward an alternative approach to traditional solutions, which relies on an adaptive

time-frame. This can be seen as a middle-term planning where the time-frame is

adjusted to the changes of the system: when the dynamism is very low, it is analogous
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to having a long-term time-frame, whereas a very high dynamism leads to a short-

term time-frame. In other words, we dynamically enlarge or diminish the time-frame

considered to better adapt the algorithm to the current state of the system. Figure 7.1

illustrates where our approach is positioned.

Besides, we provide the required mechanisms to implement this more efficient,

adaptive solution. Although this solution can be extended to countless domains and

multi-agent systems, we will go over the call centre application in order to examine the

idiosyncrasy and complexity of a real-world problem.

Figure 1.2: Adaptive time-frame mechanism.

Table 1 summarises some fundamental characteristics of the previously described

scenarios in relation to the time-frame considered.

Table 1.1: Comparison of the time-frame considered for the workforce distribution
problem.
Time-frame Complexity Response time Adaptability Performance CPU Utilisation
Short-term low low medium medium low
Middle-term high medium high high high
Long-term medium high low low high

To conclude this outline, we would like to stress that the present study has been

applied to a real-world production environment, which is fed by real-time data. This

production environment belongs to Telefónica (http://www.telefonica.com), the spon-

sor of this work.
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Telefónica is one of the world’s largest telecommunications companies by market

capital and number of customers. Its activities are mainly centred on the fixed and

mobile telephony businesses, while its broadband business is the key growth driver, un-

derpinning both. It operates in 25 countries and its customer base exceeds 300 million

people worldwide. Telefónica’s growth strategy is focused on the markets in which it

has a strong foothold: Spain, Europe and Latin America. Telefónica group stands in

third position worldwide in the telecom sector in terms of market capitalisation, the

1st as an European integrated operator and also the second company in the Eurostoxx

50 ranking, composed of the major companies in Europe (December 31st 2011). All

this makes Telefónica’s call centre an extremely complex net of interconnected sub-call

centres.
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1.2 Motivation & Main Objectives

The problem of workforce distribution in multi-agent systems is an appealing and chal-

lenging subject of research, not only from a technical point of view but also from a

business impact angle. The eminent complexity of this problem makes it even more

interesting and a firm member of the class of NP-hard problems [(63)]. Besides, timing

constraints complicate, even more, finding an accurate, feasible solution. Another rea-

son to analyse this problem is that it is often omnipresent in our daily life and is highly

relevant to many industrial application domains like trading and workflow organisation,

entailing a huge business impact.

From a parallel computing angle, this problem is also tempting since it inher-

ently allows for parallelism because the tasks to handle can be distributed over several

computing nodes and also because the computing nodes can execute different tasks in

parallel.

From an artificial intelligence point of view, this problem is also very motivating

because it involves many fields, which range from forecasting techniques derived from

machine learning theory to optimisation algorithms that use diversity maintenance

techniques from evolutionary computation and other local search schemes like simulated

annealing or tabu search.

The main purpose of this work is to provide a solution, which is fully described in

Chapter 4, for dynamic multi-agent systems based on blackboard architectures. Thus,

an efficient forecasting method must be provided in order to predict the real situa-

tion in next time-frame (future system state) and, therefore, an adaptive optimisation

algorithm must be performed to determine the right assignment <task-agent>.
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1.3 Problems with Current Solutions

Existing solutions present one or more of the following problems and limitations:

• Lack of planning: the allocation <job-agent> is performed according to the cur-

rent state of the system, without taking into account forthcoming changes. Some

authors [(37)] perform very short-term predictions so that the techniques to real-

locate jobs and agents must be very simple like the skill-based routing.

• Non-adaptive: other authors (see Chapter 3) apply complex meta-heuristics (like

simulated annealing, tabu search, scatter search or other complex local search

techniques) to get a stable allocation of agents to job types considering a specific

state of the system. This allocation must be stable as long as the techniques

require long computing times.

• Non-scalable: some of the existing techniques of the state-of-the-art are not par-

allelisable (e.g. [(22)] [(37)]) and do not scale up properly.

• Lack of robustness in the results: most of the techniques consider stable allocations

for a truly changing environment (e.g. [(106)]). In contrast, other techniques allow

for dynamic allocations (e.g. [(37)]) but the distribution often sharply fluctuates

with new patterns or load peaks.

• Non-fault tolerant: some techniques do not keep alternative solutions in case of

system failure, stopping the system (e.g. [(22)]).

• Lack of granularity: most techniques (e.g. [(22)] [(106)]) cannot work with indi-

vidual agents or individual calls. In order to reduce the complexity, those tech-

niques group agents and types of calls (following a coarse-grain model). This way,

the allocation between agents and tasks cannot be 100% accurate.

7



• Lack of preferences personalisation: traditional process management systems

rigidly distribute tasks to queues from which agents take and process work (e.g.

[(37)]), regularly without having the chance to opt for the precise tasks they

actually desire to cope with.

• Hard to incorporate job/agent constraints and business rules: most of the tech-

niques (e.g. [(106)]) do not allow for injecting business rules and handling job/a-

gent constraints.
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1.4 Key Aspects to Overcome Existing Limitations

To overcome the limitations of current solutions, the right approach to the problem of

workforce distribution should coalesce forecasting with optimisation, thereby consider-

ing an adaptive middle time-frame mechanism, so that the forecasting component can

provide the optimisation piece with more time to find a better solution.

Of course, a perfect method should consist of an accurate forecasting module that

minimises the error in the predictions for future system states (artificial neural networks

can be of valuable help).

This way, the ideal approach should have a robust, self-adapted method to han-

dle the changes of the system over time (for instance, time series for determining the

dynamism of the system and a Markov model for performing the system transitions).

With such an approach, we would be able to check the stability of the system and

inform the forecasting module about the size of the prediction window.

To scale-up properly and find an optimal solution for forthcoming system states, the

method should be based on a powerful, parallelisable approach like parallel memetic

algorithms. In order to better configure the parallel memetic algorithm in dynamic

environments, we may need a meta-genetic algorithm to automatically fine-tune all its

internal parameters.

Typically, traditional process management systems distribute tasks to queues from

which agents pull work, regularly without opting for the precise tasks they actually

desire to deal with. Instead, the right approach should enhance workforce distribution

by additionally injecting real-time knowledge of the task, individual skill sets, prefer-

ences, business rules and constraints, and availability and utilisation of the workforce,

allowing for dynamic and active distribution of tasks over time.

Additionally, the ideal method should provide further clearness on customer service

level agreements and offer outstanding customer service.
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1.5 Market Relevance

The market relevance of the present work can be devised from three distinct an-

gles: customer satisfaction (happy customers remain loyal to their telecommunications

provider), optimisation of resources (monetary savings as a result of a better work-

force distribution) and employee satisfaction (brand pride, self-esteemed fortification

and fair workload allocation). Figure 1.3 shows the three main bases of success for any

telecommunications operator.

Our research has revealed that the lack of a proper planning in inbound traffic

management can reduce customer satisfaction by 10 to 15 percent, and employee satis-

faction by 20 to 30 percent. Both figures are cause-for-concern as customer satisfaction

is paramount in the present times, and soaring attrition rates give sleepless nights to call

centre management. Consequently, it is very important for managers and supervisors

to discern when to switch an agent, and how to achieve it effectively.

Other studies ([(4)] [(46)]) prove that users’ key period to migrate to another

telecommunications operator (also denoted as churn) after having a negative experience

with call centre’s contact service is, for the majority of individuals, about 10 days from

the notification date. During these days, and even afterwards, these people negatively

influence their social circles or communities, causing a cascade effect, which implies

huge losses of money to telecommunications operators every year.
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Figure 1.3: Key factors of the market relevance.

If an organisation is planning to link up with any existing outbound churn pre-

diction models, based on likelihood to churn, then there appears the need of having a

process for risk prioritisation (potential churners are prioritised) built, if the company

has capacity constraints in its outbound call centre (when there are not enough resources

to directly contact potential churners, an automatic risk prioritisation is needed in the

inbound call centre).

However, we should highlight we cannot evade churn effect as far as it decidedly

depends upon multiple individual reasons. There, call centres can play an important

role in churn prevention as a consequence of customer satisfaction enhancement, which

irrefutably leads us to customer loyalty.

By upgrading customer service with our approach, Telefónica has estimated savings

up to e2,000,000 per year only in Spain, as it enhances brand loyalty (customers are

happier with their telecommunications operator) and other encouraging behaviours such

as the word-of-mouth advocacy.

Nevertheless, customer satisfaction is not the unique edge from where we can profit.

Another important aspect refers to the optimisation of resources we are actually doing

because we increase the speaking level of each agent (more time on the phone). If we
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consider the mean upgrading percentage obtained by our approach in 2010 (7%), we

can affirm that, only in Spain, it is possible to obtain savings up to e3,000,000 per

year.

Enhancing employee satisfaction can also be of extraordinary benefit to any telecom-

munications operator, as happy agents will be prone to reply to more incoming calls

and stay loyal to the company. The workforce distribution is a key factor to keep agents

much more satisfied and motivated because all the agents have a similar workload.

As a final point, the market relevance of this work can be extended to many other

dynamic multi-agent systems in which the list of tasks is not predefined such as plane

maintenance [(74)], online trading [(75)], disaster response [(125)], congestion in stations

[(149)] or overloading in networking nodes [(167)].
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1.6 Organisation of this Thesis

The rest of this document is organised as follows:

• Chapter 2 introduces the problem of workforce distribution in dynamic multi-

agent systems from a generic point of view in Section 2.1 and from formal per-

spective in Section 2.2. In Section 2.3, we address the difficulty of handling hard

and soft constraints. Section 2.4 describes the specific characteristics of our prob-

lem domain: the call centre.

• Chapter 3 kindly discusses the state-of-the-art and presents the required back-

ground for situating this work and making a proper understanding of it. A brief

survey of DMAS algorithms is given in Section 3.1. Section 3.2 provides a study of

related work on forecasting from diverse angles, considering commonalities with

other problem domains. Section 3.3 reviews the most representative combinatorial

optimisation techniques to the best of our knowledge.

• Chapter 4 puts forward a novel approach to the problem of workforce distribution

in DMAS. Section 4.1 sets out the underlying idea of this new approach. In Section

4.2, we explain the methodology that we have applied. Section 4.3 describes how

to create an adaptive time-frame method. Section 4.4 focuses on the forecasting

component. Section 4.5 addresses the search component of the proposed approach.

• In Chapter 5, we adapt our approach to the multi-skill call centre. Section 5.1

presents some special adaptations for the forecast module. In contrast, Section

5.2 points out some particular adaptations for the search module.

• Chapter 6 covers the experimental evaluation of our approach. Section 6.1 high-

lights the magnitude, in terms of volume, of our application domain. Section 6.2

describes the dataset employed. Section 6.3 points out the hardware descriptions
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of the SunFire sever in which the evaluations have been performed. Section 6.4

analyses the selected metrics for testing and comparing our approach. Section

6.5 examines the forecast module for five different CGs as there are too many

CGs to accomplish an exhaustive study for all of them. Section 6.6 evaluates the

search module by studying several time intervals from days with different com-

plexity; this section also compares our search module with other acknowledged

techniques. In Section 6.7, we analyse our complete approach (forecast module

+ search module) for one-day campaign. We also demonstrate how our complete

approach outperforms other conventional call centre algorithms.

• Chapter 7 concludes our work with a summary of ideas exposed in this thesis (in

Section 7.1). This chapter also presents the major contributions in Section 7.2

and points out prospects for future work in Section 7.3.
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Chapter 2

The Problem of Workforce

Distribution in Dynamic

Multi-Agent Systems

The present chapter expounds the problem of workforce distribution in dynamic multi-

agent systems from different perspectives. The main aim of this chapter is to introduce

this problem to the reader as the pillars of this work rely on the concepts given through-

out this section.

Section 2.1 presents the problem from a generic point of view. Section 2.2 formalises

the problem definition in order to provide the present work with a higher level of

scientific rigour. In Section 2.3, we tackle the difficulty of handling hard and soft

constraints as it is the typical situation in real-world environments. Finally, Section 2.4

describes the specific characteristics of the call centre.
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2.1 Generic Definition of the Problem

The term intelligent agent ([(59)]) describes an autonomous entity, which is able to

observe and interact with its environment in order to accomplish a given set of tasks

[(152)]. Intelligent agents may also learn from their environment or use previous knowl-

edge of the domain to achieve their goals. Their complexity can range from very simple

systems to very complex ones. Unlike an object, which is defined in terms of methods

and attributes, an agent is defined in terms of its behaviour.

Different authors (e.g. [(59)] [(152)] [(97)]) have proposed diverse definitions of

agents, which commonly include concepts such as persistence (code is not executed on

demand and decides for itself when it should perform a given activity), veracity (an

agent cannot communicate false information), kindness (agents do not have conflicting

goals), rationality (agents will act in order to achieve their goals), learning (agents

improve performance over time), autonomy (agents have capabilities of task selection,

prioritisation and goal-oriented behaviour), sociability (agents are able to engage other

components through some sort of communication and coordination, so that they may

collaborate on a task) and reactivity (agents perceive the context in which they operate

and react to it appropriately).

When several agents interact, these may compile a Multi-Agent System (MAS)

[(181)]. Characteristically, such agents have a partial point of view of the problem and

thus need to cooperate with other agents. Furthermore, there may be no global control

and thus such systems are sometimes denoted as swarm systems. In those cases, data

is decentralised and execution is asynchronous.

The real world is actually a multi-agent environment because we often need to

cooperate with others in order to achieve our own goals. In fact, many goals can be

only achieved with the cooperation of others. Social ability in agents is the ability to

interact with other agents (and possibly humans) via some kind of agent-communication
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language.

Commonly, the basic variant of the workforce distribution problem in a Dynamic

Multi-Agent System (DMAS) requires the assignment of tasks to the agents that

have the required skills to handle them over time, satisfying a predefined set of ad-

ditional constraints and respecting the dependencies among individual tasks and the

differences in the execution skills of the agents.

In a common DMAS, there are n tasks or work items grouped in k types of tasks

and m agents that may have up to l skills (l ≤ k) to perform these works. In this

manner, each agent can process different types of tasks and, given a type of task, it can

be carried out by several agents that have that skill. The set of skills an agent has is

frequently denoted as its profile. These profiles can be truly heterogeneous as there are

massive potential skills. Although agents may have multiple skills, each agent can only

process one operation at the same time. Given an operation, it requires an unknown

amount of time to be accomplished. Furthermore, each agent must orderly process each

operation during an uninterrupted period of time; in other words, the task cannot be

divided or postponed once it has already started.

Constraints may be given by many factors that we cannot cover in this section as

this issue is problem dependent. However, we will describe how we propose to deal with

them in Section 2.3. The solution to the problem of workforce distribution in dynamic

multi-agent systems consists in dynamically assigning every task (according to its type)

to the right agent, so that this solution satisfies all hard constraints and respects, if

possible, all soft constraints.

Eventually, we need a metric of quality to measure the rightness of each solution.

Of course, the definition of the quality function is problem dependent too. In next

chapters, we will show an example of quality function for the dynamic multi-skill call

centre use case.

17



2.2 Formal Definition of the Problem

Formalising the definition given in Section 2.1, we can find the following parameters in

a dynamic multi-agent system based on the blackboard architecture:

1. Let W be a finite set of nεN tasks or work items: W = {w1, w2, ..., wn}.

2. Let T be a finite set of kεN task types T = {t1, t2, ..., tk}, where k ≤ n when every

task type has, at least, one task assigned.

3. Let A be a finite set of mεN agents A = {a1, a2, ..., am}.

4. Let S be a finite set of kεN agent-skills S = {s1, s2, ..., sk} in which each agent-

skill, si, represents the capability to handle the corresponding type of task, ti,

with the equivalent sub-index in T. T ∼ S : s1 ∼ t1, s2 ∼ t2, ..., sk ∼ tk. In other

words, there is a bijection between tasks and skills.

5. Let P be a finite set of dεN agent-skill profiles P = {P1, P2, ..., Pd} in which each

agent-skill profile Pi ⊂ S can be any subset of S = {s1, s2, ..., sk}.

6. Let O be a finite set of nεN operations (execution or processing of each task, wi)

O = {o1, o2, ..., on} in which each operation, oi, has associated a processing time,

which depends on its type of task: T = {t1, t2, ..., tk}.

Moreover, the solution must fulfil the following descriptions:

1. every agent, ai, has associated a finite non-null subset of P, AP , containing its

skills to handle different types of tasks (individual skill-profile): (ai ∼ AP ⊂ P ).

2. on O define R, a binary relation, which represents the precedence among opera-

tions. If (oi, oj)εR then oi has to be performed before oj.
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3. the same profile Pi can be assigned to several agents. In other words, several

agents may have some skills in common (or even all of them): (1...∗)Pi ∼ (1...∗)aj.

4. although every agent, ai, may have several profiles assigned, only one can be used

at a given instant t, < ai, Pj >t.

The goal is to obtain, by means of the maximisation of a quality metric QM (prob-

lem dependent), the right assignment between every agent ai and the required profile

Pj for each time-frame considered (v seconds): Max[QM(Σai,ΣPj, t)]. In addition, the

assignment < ai, Pj >t must satisfy all hard constraints and handle the soft ones.

Figure 2.1: Multi-agent system configuration based on the potential skills of all agents.

Figure 7.3 illustrates a feasible solution for a given time-frame, supposing that

agent a1 has the skills to process the tasks t1 and t2 (through its skills s1 and s2), agent

a2 has the skills to process tasks t1 and tk (s1 and sk), agent a3 has the skill to process

the task t2 (s2) and agent am has the skills to process the tasks t1 and tk (s1 and sk).
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We have presented an example in which each agent has certain potential skills (at

least one) to attend some tasks types. The fact that a given agent has multiple skills

does not mean he must attend all these types at the same time within a given interval

(do not confuse potential skills with currently assigned skills).
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2.3 Constrainted Optimisation Problem

The problem described in Section 2.2 can be viewed as a Constrainted Optimisa-

tion Problem (COP) [(47)]. A COP is characterised by a set of v variables, X =

{x1, x2, ..., xv} and a set of c constraints Co = {co1, co2, ..., coc} ⊂ Di for a nonempty

domain Di of feasible values.

A system state is defined by an assignment of values to some (or all) variables.

An assignment that does not violate any constraints is denoted as consistent or legal

assignment. A complete assignment is one in which every variable is mentioned, and

the solution satisfies all the constraints. In our case, the constraints are associated to

the tasks, the agents, timing, actions or desired/undesired situations.

Classic COPs treat every single constraint as hard, referring to the fact that each

feasible solution must satisfy all constraints. In contrast, flexible COPs relax this

assumption by partially relaxing constraints and allowing the solution not to comply

with all them (soft constraints).

We consider the Weighted Constrainted Optimisation Problem (WCOP) in the

present work, in which each violation of a soft constraint is weighted according to a

predefined relevance (relevance is usually given by the business units of a company).

Consequently, satisfying soft constraints with greater weight is preferred, whereas hard

constraints cannot be violated in any case. The violation of soft constraints is penalised

according to the degree of non-accomplishment of these constraints and their relevance.

Weights can be assigned by defining level of constraints. For each level, we can

define a range for the weights (constraint relevance) and the gap between two levels

follows a logarithmic function in order to soften the difference among levels. Different

levels cannot have the same relevance (no overlapping constraints levels) and determin-

ing the difference among levels is frequently a business driven action according to the

market relevance. The values for a given level should be proportionally assigned.

21



For a better understanding, we present an example of the relationship among

constraints and levels of constraints for 4 levels and 7 constraints (see Figure 2.2). In

our example, Level 4 (the most relevant level) has two constraints (C1 and C2), Level

3 and Level 2 have just one constraint (C3 and C4 respectively) and Level 1 (the less

relevant level) has three constraints (C5, C6 and C7). The differences among levels

follow a logarithmic function whose range limits are given in Figure 2.2 and also in the

explanation below. As we have previously mentioned, we can distribute the constraints

of the same level in two ways: (1) equally distributing weights (see Level 1 in Figure

2.2) or (2) assigning a higher weight for certain constraints (see Level 4 in Figure 2.2).

Figure 2.2: Example of the relationship among constraints with 4 levels and 7 con-

straints.

Let us now explain in detail each level and its constraints. In our example,

Level 4 (the most relevant constraint level) has two constraints where Constraint

1 (C1) has a greater weight than Constraint 2 (C2). Level 4 ’s weights range from

Ln(4) = 1.386 to Ln(4 + 1) = 1.609, (1.386, 1.609]. Therefore, C1 may have a weight of

1.550ε(1.386, 1.609] while C2 may have weight of 1.450ε(1.386, 1.609] (these weights are
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fictitious, we just want to remark that C1 has a greater weight than C2 in Figure 2.2.

Level 3 ’s weights range from Ln(3) = 1.098 to Ln(3+1) = 1.386, (1.098, 1.386] and

Level 2 ’s weights range from Ln(2) = 0.693 to Ln(2 + 1) = 1.098, (0.693, 1.098]. Level

3 and Level 2 have a unique constraint, which must belong to its respective constraint

level’s range. Of course, Level 3 has more relevance than Level 2 , which has more

importance than Level 1 at the same time.

Level 1 ’s weights range from 0.1 (we will consider 0.1 as a minimum) to Ln(1+1) =

0.693, (0.1, 0.693]. In Level 1, all constraints have the same relevance as take the same

“space” in the level (let’s say 0.5 ).

Note that if we need to set up higher differences among levels, we just need to

assign a higher range of weights for each level but this is problem dependent (we have

just shown an example).

Finally, we need to normalise all penalisations by dividing by the total sum of

weights assigned to the soft constraints.

The aim is to find a solution to the problem whose cost, evaluated as the sum of

the cost functions (penalisations of soft constraints), is minimised.
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2.4 Particularisation of a Real-World DMAS: The

Multi-Skill Call Centre

Let us now describe the real-world DMAS to be faced in this work: the Call Centre

(CC). A CC is a centralised office where there are groups of agents, who are skilled

to handle large volumes of customer phone calls [(22)]. Most large companies use CCs

to assist with everything from information requests to the selling of products and/or

services. Since CCs are usually the main point of contact between customers and

companies, the service level provided to those clients must be high enough to assure

extreme customer satisfaction. When a CC is committed to delivering exceptional

customer experience, an effective workforce planning based on the needs of current and

future inbound traffic is required as response delays irreversibly cause client frustration.

In a common CC, the stream of calls is often divided into outbound and inbound

traffic. Outgoing calls are handled by agents, primarily, with commercial pretensions.

This type of call is planned as agents know in advance which customers must be con-

tacted on a daily basis. Conversely, incoming calls are made by customers to contract

a service, ask for information or report a problem. These unplanned calls are initially

modelled and thus classified into manifold Call Groups (CGs) in relation to the nature

of each call (complaints, VIP clients, client loyalty, etc.). As soon as these calls have

been modelled, each call is assigned to a unique CG (there is no overlap among CGs),

following a “First-Come, First-Served” policy. The processing time of an incoming call

can be broken down into 3 distinct parts as indicated below:

1. The time needed to assign a type to the call (modelling).

2. The time the call is queuing (waiting).

3. The time the agent needs to handle the call (processing).

24



A key component of any CC is the automatic call distributor, which is a system

that models incoming calls and automatically distributes them over different queues

from which certain agents can pull work. The routing scheme is a rule-based set of

operations that enables the automatic call distributor to route a given incoming call

within the system. Typically, once an incoming call has been assigned to a queue, a

second algorithm is required to select the best available agent to reply to that call.

The major problem with this second step is that conventional algorithms usually have

no time to reach an optimal solution since CCs are extremely dynamic environments

[(130)].

Habitually, the distribution of the incoming flow is carried out, considering the

current state of the queues [(61)]. However, the challenge is to solve the uncertainties

of next system state (by means of a forecast) in order to provide the algorithms with

more time to efficiently reallocate the agents according to the predicted workload. The

majority of traditional techniques is supported by a strong assumption that relies on

the way that incoming traffic arrives. Most of the techniques suppose that incoming

CC arrivals follow a Poissonian distribution. In this context, the main concern should

be to forecast, for an upcoming state, the inbound traffic, drop calls rate and available

agents having the required skills, in order to properly divvy up the workload among

agents as our resources can be, at this point, optimised by a search algorithm. Remind

that a fair allocation of workforce improves client satisfaction and, furthermore, reduces

costs.

A specific type of CC, which is our case of study, is the Multi-Skill Call Centre

(MSCC). In an MSCC, there are n incoming customer calls C = {c1, c2, ..., cn} grouped

in k call groups CG = {cg1, cg2, ..., cgk} according to the call type, and m agents

A = {a1, a2, ..., am} that have a subset of all the possible skills (S = {s1, s2, ..., sk}) to

attend the corresponding CGs (having the skill si enables you to attend the call group
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cgi). Not all the agents have the same skill set and the number of skills per agent is

different. Agents can only attend the CGs they have been trained for. This implies that

each agent can attend different call types and, given a call type, it can be answered by

several agents who have the associated skill. Note that agents cannot attend any kind

of customer calls as they are usually specialised in concrete tasks (they do not have the

complete skill set) or sometimes limited by law regulations. Although agents may have

multiple skills, each agent can only process one call at the same time. Furthermore,

given a call, it requires an unknown amount of time to be accomplished. Besides, each

agent must orderly process each call during an uninterrupted period of time; in other

words, the call cannot be divided or postponed once it has been started.

Obviously, the scenario can be simpler in some special CCs in which agents have

a single skill. Those CCs can be modelled with q single queues working in parallel.

In other cases, every agent has the whole skill set; hence all customers are queued in

a single queue that can be handled by any agent. The system is noticeably easier to

analyse in these two extreme cases. With all the agents having every skill, the system

is also more efficient (shorter waiting times, fewer call drops) when the service time

distribution for a given call type does not depend on the agent’s skill set. However,

this assumption turns out to be wrong in practice: agents are usually faster when they

handle a smaller set of call types (even if their training or background provides them

with more skills).

Agents with more skills are also more expensive as their salaries depend on their

skill sets. Thus, for large volumes of call types, it makes sense to dedicate a number of

single-skill agents (specialists) to handle most of the load. A small number of agents,

proportional to the calls of each type, with two or more skills can cover potential

fluctuations in the arriving load (this is one of the reasons for which we predict call

arrivals). To address these fluctuations, the skills are grouped in skill profiles (subsets
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of skills) so that we can assign an agent to specific types of tasks during a given period

of time, despite this agent has skills to process other types of work. These profiles are

sets of related skills so that we can group similar skills (same relevance or close nature)

without adding more dimensions. Of course, profiles may contain a unique skill if we

need the maximum granularity for other skills.

Besides, the mean call arrival rate is not the same for each CG as well as the

calls of these CGs require different processing times. Traditionally, the forecasting of

incoming calls in CCs has been approximated according to a Poisson Distribution (PD)

[(27)]. However, inbound traffic in CCs is usually not a stationary Poisson process

[(105)] [(2)] and, the service times do not increase exponentially. Since calls randomly

arrive according to a stochastic process, it would be desirable to have a well-balanced

allocation of agents, who can be available or not, in order to attend the incoming calls

as soon as possible (more reasons to forecast incoming calls).

Figure 2.3 illustrates the relationship among client calls, queues and agents. This

figure describes an example for 9 client calls grouped in 4 CGs, 5 agents having different

real skills and 7 different profiles.

27



Figure 2.3: Inbound traffic scheme in MSCCs.

More formally speaking, the following parameters can be found in an MSCC:

1. Let C be a finite set of nεN customer calls: C = {c1, c2, ..., cn}.

2. Let CG be a finite set of kεN call groups CG = {cg1, cg2, ..., cgk}, where k ≤ n

when every CG has, at least, one call queuing.

3. Let A be a finite set of mεN agents A = {a1, a2, ..., am}. Usually, m >> k.

4. Let S be a finite set of kεN agent-skills S = {s1, s2, ..., sk} in which each agent-

skill, si, represents the capability to handle the corresponding CG, cgi, with the

equivalent sub-index in CG. CG ∼ S : s1 ∼ cg1, s2 ∼ cg2, ..., sk ∼ cgk.

5. Let P be a finite set of dεN agent-skill profiles P = {P1, P2, ..., Pd} in which each

agent-skill profile Pi ⊂ S can be any subset of S = {s1, s2, ..., sk}.

6. Let O be a finite set of nεN operations (execution or processing of each customer

call, ci) O = {o1, o2, ..., on} in which each operation, oi, has associated a processing

time, which depends on its CG.
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Moreover, the solution must fulfil the following descriptions:

1. every agent, ai, has associated a finite non-null subset of P, AP , containing its

skills to handle different CGs (individual skill-profile): (ai ∼ AP ⊂ P ).

2. on O define R, a binary relation, which represents the precedence among opera-

tions. If (oi, oj)εR then oi has to be performed before oj.

3. the same profile Pi can be assigned to several agents. In other words, several

agents may have some skills in common (or even all of them): (1...∗)Pi ∼ (1...∗)aj.

4. although every agent, ai, may have several profiles assigned, only one can be used

at a given instant t, < ai, Pj >t.

The solution to the problem of the workforce distribution in MSCCs is defined as

the right assignment, by means of the maximisation of a quality metric QM (problem

dependent), between every agent ai and the required profile Pj for each time-frame

considered (v seconds): Max[QM(Σai,ΣPj, t)]. In addition, the assignment < ai, Pj >t

must satisfy all hard constraints and handle the soft ones given by the business units.

To determine whether (or not) a given solution is suitable, we need to define

a quality metric to evaluate the rightness of each feasible solution. There are very

significant metrics to measure the quality of a CC such as the drop call and service

rates. These metrics somehow hinge on the (customer) service level [(106)], which is

defined as the percentage of customer calls that have to queue shorter than a specified

amount of time. Our work has been conducted by applying this metric.

To wrap up this section, it is important to highlight that an initial step to produce

a workforce planning is to predict future system loads. Therefore, the challenge is to

forecast the number of incoming calls that will be in each queue on that prospective

system state. Bear in mind that for each forthcoming system state, we have to determine
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the total number of agents having certain skills and the total number of calls queued

in each queue at t+ v:

IC(t+ v) = QC(t) + AC(t, t+ v)− PC(t, t+ v)− CD(t, t+ v) (2.1)

where

• v is the size of the prediction window,

• IC(t+ v) is the predicted number of Incoming Calls at time t+ v,

• QC(t) is the number of Queuing Calls at time t,

• AC(t, t+ v) represents the number of Call Arrivals during the interval (t, t+ v),

• PC(t, t+ v) is the number of Processed Calls during the interval (t, t+ v),

• CD(t, t+ v) is the number of Call Drops during the interval (t, t+ v).

As the number of available agents mainly depends on the agent timetable, the

number of queuing calls is well-known, the number of processed calls between t and

t+ 1 depends upon the mean processing time of each CG and the number of call drops

is proportional to the number of incoming calls, we will mainly focus on the prediction

of call arrivals and will sum up/subtract the other terms of the equation.

The main objective of this real-world problem is to get, for each time-frame (t+v),

an automatic allocation of agents and call groups ({ai, cgj}t when ai is related to sj)

that maximises the service level (see [(130)]). It stands to reason that we want to assign

a larger number of agents to those CGs with a greater volume of traffic based on their

priority or relevance. As a general rule, we should find the situation that respects the

desired service levels for each CG (at least the most important ones). Having a much
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smaller number of available agents than incoming calls, it will be necessary to carry out

an adequate redistribution of the agents at any time.

The problem of workforce distribution in MSCCs is a very complex, dynamic real-

world problem. Usually, the number of incoming calls (n) is much larger than the

number of agents (m) and the flow of calls is very dynamic over time, making this

problem really hard. Intuitively, this problem is much more complicated than having

a simple pool of incoming calls where agents take work from, since it requires the

assignment of customer incoming calls to the agents having the right skills, satisfying

a given set of additional constraints and respecting the dependencies among individual

tasks and differences in the execution skills of the agents (see [(130)]). This problem

is somehow related to other classic changing scenarios where staffing requirements are

identified to insure that the organisation has the right number of agents at the right

time. This is a highly difficult problem because we are not only dealing with an NP-

hard problem like the job assignment problem ([(28)]), but the problem also considers

rapidly varying conditions, massive incoming calls and a large number of agents having

hard constraints to process certain tasks.

All these premises make us conclude that we need to employ non-deterministic

techniques like evolutionary algorithms. In many scenarios, evolutionary algorithms

have proved that they can solve very complex real-world and theoretical problems and

frequently perform well approximating solutions to all types of problems because they

do not make any assumption about the underlying fitness landscape.
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Chapter 3

Literature Review

Throughout the present thesis, we will apply diverse fields from artificial intelligence

since this work is founded on predictive and optimisation algorithms: artificial neural

networks for the forecasting module, time series for the dynamism mechanism and par-

allel memetic algorithms for the optimisation module. Therefore, apart from reviewing

workforce distribution techniques for DMAS, we will present a survey of forecasting

and optimisation techniques as they constitute the basis of our novel approach.

In Section 3.1, we will present some key workforce distribution techniques for

DMAS (in the first subsection) with special focus on the call centre (in the second

one). Section 3.2 provides a study of related work on forecasting from diverse angles,

considering commonalities with other problem domains, including the call centre. Sec-

tion 3.3 reviews the most representative combinatorial optimisation techniques to the

best of our knowledge. These techniques are not specifically conceived for the call

centre, so that we will discuss whether (or not) they can be employed. At the end of

each section, we present a brief discussion, highlighting current limitations and some

improvement points.
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3.1 Workforce Distribution Algorithms for DMAS

3.1.1 Generic Algorithms

There is a large number of workforce distribution techniques for conventional DMAS. A

very common technique is the Random Workload Balancing (RWB) [(79)]. RWB purely

assigns a random profile to each agent (among the available ones for that agent). In

RWB, the neighbourhood covers the whole search space. After multiple iterations, the

best solution found is chosen. Supposing there are s possible solutions, the probability of

finding the global optimum is 1/s for each execution. This technique can be appropriate

whether there is little communication overhead and numerous agents are available. As

the number of agents decreases, the workload of the busiest agents increases in relation

to the average agent workload, resulting in poor parallel efficiency. Since each task is

assigned to an agent by selecting a random destination, RWB only needs to execute a

single pass through the tasks list.

Other common approach is the Greedy Workload Balancing (GWB) [(34)]. GWB

reallocates agents without considering the current assignment task type-agent (note that

other techniques start out from a neighbour solution but GWB does not). An agent

heap is built with the intention that the agent with the least assigned workload is on

the top of that heap. At the beginning, no tasks are assigned to any agents, hence every

agent in the heap has no workload, and the agent on the top of the heap is randomly

chosen. A task heap is also built and organised, so that the most time-consuming

task is on the top of the heap. For each agent, the most time-consuming unassigned

task is allocated to the less loaded agent with the capability of handling that type of

task. Afterwards, the agent’s workload is updated and both heaps are readjusted. This

process is carried out until every task has been assigned to an agent with the required

skills.
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Other authors have as well put forward different approaches. For instance, Baker

(1983) [(17)] stated that a task flow allowance was a fixed amount for given task data

and did not depend upon the status of the system when the task arrived. Then,

Vaughan (1985) [(171)] provided a literature survey, describing various load balancing

techniques using a tree structured classification. Eager et al. (1986) [(52)] concluded

that simple workload distribution policies offered the greatest promise in practice in

homogeneous MAS, because of their combination of nearly optimal performance and

inherent stability. Afterwards, Shenker and Weinrib (1989) [(158)] investigated the

performance of load-sharing and routing algorithms, proposing new heuristic policies

(like the shortest-expected delay policy) that performed well over a wide range of sys-

tem parameters. In 1990, Kuchen and Wagner (1990) [(109)] described several load

balancing techniques that depended only on local knowledge. Their techniques were

divided into three types: active, passive and mixed. Baker and Milner (1991) [(18)]

used a load balancing strategy in process migration experiments. Applications were

programmed, using a special harness. Then, Cutkosky et al. (1996) [(42)] provided

rapid responsive and dynamic reconfigurable structures in order to facilitate flexible

and efficient use of manufacturing resources in a dynamic environment. In 1997, Trehel

et al. (1997) [(169)] presented an original model of dynamic workload balancing inside

groups of agents, using queueing theory. Later, a dynamic load balancing scheme for

structured adaptive mesh refinement applications was proposed in Lan et al. (2001)

[(111)]. They presented two improvements to reduce overhead. Then a detailed sensi-

tivity analysis was provided to identify an optimal value for the parameter threshold.

Liu et al. (2005) [(119)] presented a macroscopic characterisation of agent-based work-

load balancing in homogeneous environments. The agent-based workload balancing was

regarded as agent distribution from a macroscopic point of view. Finally, Dhakal et

al. (2007) [(48)] defined an approach with a certain special random variable, called
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regeneration time, defined as the time to the first completion of a task by any agent or

the first arrival of a communication, whichever came first.

3.1.2 Specific Algorithms for the Call Centre

Reviewing the state-of-the-art on CC algorithms, one can realise that many algorithms

for workforce distribution in single-skill CCs are available (e.g. [(178)]) because, in the

past, agents were commonly allocated to single customer call groups. Nevertheless, few

works have been conducted to workforce distribution in MSCCs, which is the commonest

scenario in nowadays CCs.

In the past, the first call-distribution techniques followed a very basic scheme,

assigning the next incoming call to be processed (from a pool of calls) to the next

available agent (from a pool of agents) who had the required skill. Afterwards, workforce

distribution in MSCCs had broadly been faced by a Skill-Based Routing algorithm

(SBR) [(64)]. SBR was a call-assignment strategy used in CCs to assign incoming

customer calls to the most suitable agent, instead of simply choosing next existing

agent. The need for SBR arose as CCs became larger and had to deal with a wider

variety of call types. Habitually, the routing strategy was led by a simple heuristic (e.g.

efficient driven SBR) as SBR claimed for quick movements rather than convoluted,

time-consuming formulas. SBR usually relied on the Erlang-C formula [(126)], which

had extensively been applied to the CC domain. Nevertheless, some researches [(91)]

[(123)] claimed that the conventional Erlang-C formula was no longer applicable to

settling on staff schedules as they were frequently inexact. The major handicap of

this approach was that online (ad-hoc) routing heuristics could not be very complex in

view of the fact that a very short response time was required. These fast, unplanned

decisions could imply suboptimal task types assignments to existing agents.

Conversely, Thompson [(166)] proposed an integer programming model, which dif-
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ferentiated minimum acceptable service levels per time-frame from a constraint on the

mean service level over the planning horizon. Notwithstanding this approach considered

prospective situations, it was less dynamic to changes than SBR.

Other approaches considered dependent planning intervals (e.g. [(92)]). Most

methods performed well enough within separate intervals but their performance de-

creased when moving to the next one, giving much trouble in prospective time-frames.

Other authors took into consideration overflow routing in multi-skill blocking sys-

tems with randomisation parameters by applying a branch-and-bound algorithm (e.g.

[(112)]) or cutting planes (e.g. [(72)]). These techniques were only appropriate for

stable environments because they needed long response times and their performance

highly decreased in large instances.

One of the most representative algorithms of the state-of-the-art is the one proposed

in Koole et al., 2008 ([(106)]). Koole presented a heuristic, which considered the costs

of agents and a service-level condition, to optimise the distribution of agents among

different CGs. This algorithm is faster than most of the aforementioned approaches

but deals with specific types of MSCCs in which customer calls arrive according to a

Poisson process with deterministic rate. However, note that inbound flow in MSCCs

is not usually a stationary Poisson process [(105)] [(2)] and the service times do not

increase exponentially. Since calls arrive randomly according to a stochastic process,

agents must be well-distributed to handle the calls as soon as possible. Besides, the

previous techniques often consider a high granularity and need to work at agent groups’

level instead of an agent’s profile level. This setback does not enable us to offer more

accurate solutions.
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3.1.3 Discussion

A quarter-century of blackboard-system experience and more than a decade of MAS

development have produced a solid baseline of collaborating techniques. Truly, there

is a number of workforce (agents are assigned to task types) and workload (tasks are

routed to the agents) techniques for DMAS.

The power of any MAS can be realised by allowing its constituent agents to work

cooperatively so that large workloads are distributed among them in a fair and effective

manner. Any strategy for workload distribution among agents is also called workload

balancing. An effective workload policy ensures optimal use of the distributed agents,

whereby no agent remains in an idle state, while any other agent is overworking. Al-

though the majority of workload distribution policies developed heretofore took into

account such time delays, they were predicated on the assumption that delays are de-

terministic.

Besides, there is a commonality in all the reviewed algorithms, as they are all

supported by basic optimisation heuristics in order to provide fast responses. Therefore,

the predictive component of these approaches is very basic because it is intended for

short-time predictions.
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3.2 Forecasting in DMAS

Most people perceive the world as a place where there is a large number of alternatives.

In this context, forecasting refers to the estimate of attributes under unknown situations

to help decision, making and strategic planning. A significant but ignored aspect of

forecasting is the close relationship it holds with strategic planning. Forecasting can be

expressed as predicting how future will resemble, whereas strategic planning enlightens

how future should look like. There is no universal, most suitable forecast method to

use, as it depends on our objectives and preconditions. In this section, we will review

some forecasting techniques for both general DMAS and call centres.

3.2.1 Generic Forecasting Techniques for DMAS

Some authors have addressed similar problems by means of Regression Models (RM)

[(118)], [(135)], [(77)], [(102)]. An RM is a statistical method in which an unknown

variable is predicted according to its relation with the rest of well-known variables (also

named as predictors), using a formula called regression equation [(118)], [(108)], [(107)].

This equation deals with some constant parameters, which must be optimised to reduce

the Mean Square Error (MSE) between the predicted output and its real value. These

model types are sophisticated and make possible almost infinite variety in analysis, and

can thus be complex and difficult to master.

We can find different variants of RM like the Linear Regression (LR), which is one

of the commonest variants. LR fits all parameters by applying diverse policies. The

commonest policies are the following ones: least squares approach, minimisation of the

"lack of fit" and minimisation of least squares loss function as ridge regression assumes.

Although not identical, least squares and linear model are intimately related to each

other [(118)]. LR approximates the unknown variable with a straight line by using
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well-known variables as follows:

Yi = β0 +
∑

βpXip + εi (3.1)

where parameter i is the pattern-position in the dataset, p indicates the n-th

well-known variable, βP represents the associated parameters to the n-th well-known

variable, β0 is a constant parameter, Y refers to a dependent variable and ε denotes

the associated error. βP and β0 are calculated in order to reduce Σεi, using predefined

patterns.

Another important variant is the Logistic Regression (LogR) (Nemes, 2009) [(138)],

which is used for predicting the occurrence probability of an event by fitting data to a

logistic function. It is indeed a generalised linear model used for binomial regression.

Like many forms of regression analysis, it makes use of several predictor variables that

can be either numerical or categorical [(138)]. LogR measures the relationship between

a categorical dependent variable and usually a continuous independent variable (or

several), by converting the dependent variable to probability scores. The regression

coefficients are usually estimated using maximum likelihood estimate. Unlike LR with

normally distributed residuals, it is not possible to find a closed-form expression for

the coefficient values that maximises the likelihood function, so an iterative process

must be applied instead (i.e. Newton’s method). This process begins with a tentative

solution, revises it slightly to see whether it can be improved, and repeats this revision

until improvement is minimal, at which point the process is said to have converged.

The model may not converge in some instances. When a model does not converge,

this indicates that the coefficients are not meaningful because the iterative process was

unable to find appropriate solutions. Like many forms of regression analysis, it makes

use of several predictor variables that can be either numerical or categorical. LogR has

also been applied to intra-day forecasting successfully.
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Much of the previous work on call arrivals forecasting is focused on the application

of standard Time Series (TS) (Wei, 1989) [(173)], such as Autoregressive Integrated

Moving Average or Exponential Smoothing like Single Exponential Smoothing, Damped

Trend Time Series and Stationary Time Series (Garcia, 2009) [(62)].

A TS is a sequence of observed variables, taken in regular time-slices. This sequence

is used for understanding and forecasting the behaviour of a given variable over time

based on previous states [(173)]. A TS applies a (more or less complex) regression over

the n-previous variables to estimate forthcoming values. This way, TS can be divided

into two major groups: 1) Exponential Smoothing (ES) and 2) Autoregressive Integrated

Moving Average (ARIMA).

At the same time, ES methods, which assign decreasing weights to each previous

observation, are split into: Single Exponential Smoothing (SES), Damped Trend Time

Series (DTTS) and Stationary Time Series (STS) [(62)]:

1) SES [(184)] is a method for forecasting whether the mean is stationary or slowly

changes over time. The name is frankly ambiguous, given that this is a moving average

method in which weights decline as the interval between the current time increases. The

smoothed value lags the current value as long as this method depends upon previous

values. When the smoothing value is small, the oscillations are seriously damped and

the smoothed value tends in the direction of the mean. Nevertheless, when the smooth-

ing value is large, the oscillations noticeably fluctuate and, as a result, the smoothed

value tends to the current value. SES can be obtained as follows:

St = αyt−1 + (1− α)St−1;

0 < α ≤ 1, t ≥ 3;

Ft+1 = αyt + (1− α)St

(3.2)

where S stands for the smoothed observation, t refers to an index, which denotes a
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time-period, α is a constant, which must be estimated with the purpose of minimising

the MSE, y is the observation and F is the forecast.

2) Instead, DTTS (also known as Double Exponential Smoothing) [(25)] extends

exponential smoothing by incorporating a term for linear trends. DTTS is a suitable

technique to deploy when data show trend and seasonality [(122)]. This technique

introduces a third equation to cope with seasonality. Suppose that at time t, yt is

observed, the level Lt is estimated and the slope bt is known in the series. Afterwards,

a k-step ahead forecast is Ft+k = Lt + btk. DTTS allows us to adjust the slope with

each new observation. DTTS can be formalised as:

St = αyt−1 + (1− α)(St−1 + bt−1); 0 ≤ α ≤ 1;

bt = γ(St − St−1) + (1− α)bt−1; 0 ≤ γ ≤ 1;

Ft+m = St +mbt;

(3.3)

3) A STS is one whose statistical properties (e.g. mean, variance, autocorrelation,

etc.) are all constant over time. Most statistical forecasting methods are based on

the assumption that the TS can be rendered approximately stationary through the use

of mathematical transformations. A stationarised series is relatively trivial to predict:

you simply predict that its statistical properties will be the same in the future as

they have been in the past. The predictions for the stationarised series can then be

untransformed, by reversing whatever mathematical transformations were previously

used, to obtain predictions for the original series. Therefore, finding the sequence of

transformations needed to stationarise a TS often provides important clues in the search

for an appropriate forecasting model.

STS is a suitable technique to deploy when data show trend and seasonality. This

technique introduces a third equation to cope with seasonality. STS can be formulated
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as follows:
St = α

yt
It−L

+ (1− α)(St−1 + bt−1); 0 ≤ α ≤ 1;

bt = γ(St − St−1) + (1− γ)bt−1; 0 ≤ γ ≤ 1;

It = β
yt
St

+ (1− β)It−L;

Ft+m = (St +mbt)It−L+m;

(3.4)

where y is the observation, S stands for the smoothed observation, b is the trend

factor, I indicates the seasonal index, F denotes the forecast at m periods ahead, t

refers to an index that denotes a time period and α, β and γ are constants, which must

be estimated with the purpose of minimising the MSE.

Differently to smoothing approaches, ARIMA [(122)] is determined by three pa-

rameters (p, d, q), where p is the autoregressive term, d is the number of previous values

and q is the average moving parameter. ARIMA (p, d, q) can be calculated for a TS

sequence Yt(t = 1, 2, . . . , n), as follows:

φ(B)(1−B)dYt = θ(B)Zt;

whereφ(B) = (1− α1B
1 − α2B

2 − . . .− αpBp);

andθ(B) = (1− β1B
1 − β2B

2 − . . .− βqBq);

(3.5)

Zt is a white noise sequence and B is the backshift operator.

ARIMA (p, q, d) · (P,D,Q) represents a multiplication of two ARIMAs to inject

seasonality into the model. This method requires that new seasonal and non-seasonal

parameters are estimated; analogously to simple ARIMA. The involved parameters

are the following ones: p is the autoregressive order, which indicates the number of

parameters of φ, d is the number of times that data series must be distinguished to

induce a stationary series, q is the moving average order that designates the number

of parameters of θ, P is the seasonal autoregressive order that specifies the amount
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of parameters of φ, D is the seasonal moving average order, which points out the

quantity of parameters of θ, and Q is the number of times that a data series needs to

be differenced to induce a seasonal stationary series.

Finally, the problem of predicting task arrivals can be faced by an Artificial Neu-

ral Network (ANN), which is a mathematical model founded on the functioning of

biological neural networks [(124)]. In this manner, an artificial neuron is a computa-

tional model inspired in biological neurons and also the simplest processing element

of an ANN. Natural neurons receive signals through synapses placed on the dendrites.

When the arriving signals surpass a certain threshold, the neuron is activated and emits

another signal through the axon. This signal can be sent to another synapse to activate

other neurons.

In order to emulate biological neurons, the artificial ones (see Figure 3.1) are organ-

ised into two units: the first one is a non-linear weighted sum of weight coefficients and

input signals, F(x), whilst the second one follows a non-linear function, widely known

as neuron activation function, K. The function F(X) accumulates weights wi and maps

results to an output as given below:

F (x) = K(Σwiinputi) (3.6)

Figure 3.1: Scheme of a basic artificial neuron.
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The weights, wi, are randomly initialised and then updated during the training

process.

There are numerous functions to approximate K, but the most widespread ones

include the Gaussian function, the hyperbolic function and the sigmoid function. We

will employ the sigmoid function as this is the most appropriate one for our dynamic

environment. The sigmoid function and its derivative are defined as indicated below:

σ(x) = 1
1 + e−x

δσ(x)/δx = σ(x)(1− σ(x))
(3.7)

Figure 3.2 plots the sigmoid function to facilitate reader’s understanding.

Figure 3.2: Sigmoid function.

As a remark, the sigmoid function can never return “0” or “1“ due to its asymptotic

nature so that values over 0.9 should be treated as 1 and those under 0.1 should be

considered as 0.

Neurons can be grouped into three types of layers: input, hidden and output. The

input layer is composed by neurons that represent the data input variables and “feed”

next layers of neurons. Next layers, which are sometimes optional, are denominated

hidden layers and there may be several of them. The last layer is called output layer,

45



in which each neuron represents an output variable. Each layer is fully connected to

the succeeding layer as Figure 3.3 illustrates.

For linearly separable problems, a sole neuron can categorise the output, but when

having more than one class or multimodal spaces at least one hidden layer is needed

[(24)].

Many authors apply regression methods in which data is best-fitted to a specified

relationship that is usually linear. However, these methods have several handicaps. For

instance, relationships must be chosen in advance and these must be distinguished as

linear or non-linear when defining the equation. ANNs enable us to overcome all these

problems.

In regression, the objective is to forecast the value for a continuous variable, which

is the incoming flow rate in our case. The output required is a single numeric variable

that has been normalised between 0 and 1. ANNs can actually perform a number of

regression tasks at once, although each network commonly performs only one.
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Figure 3.3: Example of a simple ANN with 8 input neurons, 8 hidden neurons and 5

output neurons, forming 3 fully connected layers.

There exists a number of learning algorithms for training ANNs. Most of them can

be viewed as a clear-cut application of optimisation theory and statistical estimation.

This way, we can find learning algorithms such as back-propagation by gradient de-

scent [(129)], back-propagation with momentum [(146)], resilient propagation [(148)],

quick-propagation [(9)], Broyden-Fletcher-Goldfarb-Shanno [(121)], radial basis func-

tion [(29)], cascade correlation [(56)], Hopfield [(85)], etc.

3.2.2 Call Centre Forecasting

There are numerous works on forecasting although very few of them address the problem

of predicting call arrivals in CCs. But, what does forecasting stand for in a CC domain?

Forecasting consists of the estimate of values at certain specific future points in time.

Forecasting is the pivotal point in CCs’operations where efficiency, effectiveness and
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service quality intersect. In this manner, there are many things that would be worth

predicting in a common CC, such as call arrival rates, call drop rates, available agents

having a certain skill, speaking levels (this is the time the agent is truly processing

calls), service rates (given by a quality metric) and mean delay times, although we will

just focus on call arrival forecasting.

Why is forecasting necessary in a typical CC? Since CCs are usually the main point

of contact between customers and companies, the service level provided to those clients

must be high enough to assure extreme customer satisfaction. When a CC is committed

to delivering exceptional customer experience, an effective workforce planning based on

the needs of current and future inbound traffic is required as incessant response delays

irreversibly cause client frustration. Where CC forecasting is repeatedly inaccurate, it

is most likely that the CC will very shortly cease to exist. Even though CCs have been

broadly studied, there is still some lack of optimisation which sparks a wrong allocation

between agents and tasks. This inaccurate allocation of resources may cause huge losses

of money every year and client dissatisfaction due to the derived never-ending delays.

We can distinguish two types of call arrivals forecasts in a common CC: (a) inter-

day forecasts for several days or weeks ahead; and (b) intra-day forecasts to dynamically

update the prediction using newly available information as one of the biggest forecasting

challenges is related to call volume fluctuations. In general, call arrival data is grouped

in delimited time periods which may range from 15 - to 30 -minute intervals and the

target of forecasting is future call volumes over such periods (Jongbloed and Koole,

2001 [(96)]).

On the one hand, underestimating incoming call volume involves unacceptable call

drop rates. A large number of call drops indicates that the service level is not met

and, consequently, the client is most likely to be unhappy. Obviously, customers with

excessive queuing times get cranky. On the other hand, overestimating inbound traffic
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has a direct impact on the bottom line. Less than fully occupied, customer service

agents feel demotivated, get bored and lose interest. Service level goals may effortlessly

be attained but idle staff sends the cost per call through the roof.

Particularly, a precise prediction enables us to be prepared for what future may

have in store for us, so that we can correctly balance the workload among agents,

presenting higher service levels and, eventually, optimising our resources. To achieve

this, we can compile arriving tasks, task failures and queuing tasks in a unique value,

which designates the total number of pending tasks to handle (grouped by task types).

Unfortunately, there is no accurate mechanism to foresee what future will bring

along with complete sureness. Risk (wrong workload predictions generally entail losses

of money or even major hazards) and uncertainty (ambiguity or indecision to reach our

predefined goals) are omnipresent in forecasting to the degree that it is customarily

considered appropriate practice to specify the level of uncertainty associated to each

prediction.

Existing techniques usually distribute workload according to daily, weekly or even

monthly forecasts [(130)], so that specific anomalous peaks cannot be forecast. As an

example, many Spanish CC professionals may remember the chaotic morning of May

20th, 2010 when some building works in Valence caused an Internet cut-off in Castellón

and its surrounding area. This obviously entailed an important peak of incoming calls

- from people asking for information - which could not probably be predicted. This

peak of calls involved an unusual low service level and many people ported out to

other competitor broadband providers due to the poor service offered on that day. To

mitigate this drawback, any CC should inject both real-time and historical information

into its predictive models so that workforce plannings meet their real needs to achieve

the desired service levels.

The prediction of call-centre arrivals has traditionally been addressed by means of
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a Poisson Distribution (PD) [(27)]. PD, which was first introduced by Siméon Denis

Poisson, expresses the probability of a number of events occurring within a defined

time-interval when those events are independent of the previous one and take place

with a known rate. Under these conditions, PD is a reasonable approximation of the

exact binomial distribution of events. Additionally, PD provides a useful mechanism to

assessing the percentage of time when a given range of results is expected.

In the calculation of the distribution function, the values for the mean and standard

deviation are given by the binomial distribution. Thus, “conventional” approaches

assume that the number of incoming calls at any given point in time follows a PD. For

this reason, pure-chance traffic is also named as Poisson traffic. Assuming pure-chance

arrivals and pure-chance terminations leads to the following probability distribution:

P (n) = λn

n! · e
−λ (3.8)

where n denotes the number of arriving tasks in an interval of duration d, λ stands

for the mean of arriving tasks at time t and e refers to the base of the natural logarithm

(e ' 2.7183). The parameter µ does not only correspond to the mean number of

event occurrences, but also its variance. This way, the number of observed occurrences

fluctuates around its mean λ with a standard deviation σk =
√
λ. These fluctuations

are designated as Poisson noise.

The correlation of the mean and standard deviation in counting independent dis-

crete occurrences is helpful to for instance estimate the contribution of a single occur-

rence even when the contribution is very small.

Table 3.1 shows the values returned by a PD when varying λ between 0.1 and 1.5.

In the same way, Figure 3.4 plots the points of Table 3.1 to better understand PD’s

nature.

50



n / λ 0.1 0.5 1 1.5
0 0.905 0.607 0.368 0.223
1 0.090 0.303 0.368 0.335
2 0.005 0.076 0.184 0.251
3 0.000 0.013 0.061 0.126
4 0.000 0.002 0.015 0.047
5 0.000 0.000 0.003 0.014
6 0.000 0.000 0.001 0.004
7 0.000 0.000 0.000 0.001
8 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000

Table 3.1: Poisson distribution by varying λ between 0.1 and 1.5.

Figure 3.4: Poisson distribution by varying λ.

PD has inspired diverse authors to extend its philosophy to other problem domains.

Reviewing the existing literature, we can bump into numerous algorithms founded on

(or at least supported somehow by) a PD. As an example, we should highlight Erlang-

based algorithms.

The Erlang distribution, first pioneered by A. K. Erlang [(126)], is a continuous

probability distribution with extensive applicability. This distribution, which has a
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positive value for every real number greater than zero, is given by two terms: the shape

k (a non-negative integer) and the rate l (a non-negative real number). The distribution

is sometimes defined using the inverse of l, which is denoted as the scale m. Erlang

distribution was conceived as a mechanism to inspect the number of calls arriving

simultaneously to the agents of any MSCC. This work, which was originally designed

for the CC domain, has afterwards been applied to other queuing environments by other

authors [(57)], [(51)]. In the Erlang distribution, events are modelled in accordance with

a Poisson process and independently take place with certain average rate. The waiting

times between k event occurrences are Erlang distributed.

Figure 3.5 plots Erlang distribution for k = (2, 3) and λ = (3, 1).

Figure 3.5: Erlang distribution for k = (2, 3) and λ = (3, 1).

However, the prediction of inbound traffic in an MSCC cannot sometimes be ad-

justed to a PD with deterministic rate. In all studies (e.g. [(60)] and [(105)]), the arrival

scheme agrees with a Poisson process only if the arrival rate of the Poisson process is

itself a stochastic process.

Characteristically, the variance of calls arriving within a given interval is much

larger than the mean. However, PD’s hypothesis states it should be equal to the mean

for PDs. The mean arrival rate also strongly depends upon the day-time and often

on the week-day, but Poisson processes comply with the memoryless property of the
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exponential distribution [(60)], which is unable to detect this kind of features. Besides,

in some MSCC’s like ours, there is positive stochastic dependence between arrival rates

in successive periods within a day and arrival volumes during successive days. Taking

into account all these premises, we can realise how pertinent it is to find a more effective

method to forecast incoming calls, which does not merely rely on the hypothesis of a

simple PD.

There are other numerous works on forecasting although very few of them address

the problem of predicting call arrivals in call centres. A very good compilation of

forecast techniques for call centres was provided by Van den Bergh (2006) [(20)]. His

work mainly focused on the forecast methods that were expounded and utilised for

predicting call arrivals in call centres on a daily basis. Van den Bergh (2006) [(20)]

gathered a wide selection of forecast models which ranged from ARIMA models and

regression models to a variety of time series.

Like in other DMAS, some authors have addressed similar problems by means of

Regression Models (RM). For instance, Klungle (1998) [(102)] used a Dynamic RM to

forecast the number of incoming calls for the Emergency Road Service. An important

finding was that the number of call arrivals noticeably varied at different times of the

day during winter and spring seasons. In this work, it is claimed that RM performed

better than the Holt-Winter’s method and other basic neural networks. Ibrahim et

al. (2012) [(88)] also considered a simple linear regression model with independent

residuals to predict CC arrivals. The model was equivalent to a historical average

approach as it basically used past averages as forecasts of future call volumes which

was also related to the works of Weinberg (2007) [(174)] and Shen and Huang (2008)

[(157)]. Weinberg et al. (2007) [(174)] developed a Bayesian model for forecasting call

centre arrivals that specifically assumed different weekday has its own smooth arrival

rate profile. They extended the work of Avramidis et al. (2004) [(14)] and Brown et
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al.(2002) [(27)] to model both inter-day and intra-day dependences. Shen and Huang

(2008) [(157)] proposed a dynamic factor model for 15 -minute call arrivals to a bank

call centre. They applied univariate time series forecasting techniques to forecast them

separately. Logistic Regression (LogR) (Nemes, 2009) [(138)] has also been applied to

intra-day forecasting successfully.

Much of previous work on call arrivals forecasting is focused on the application of

standard Time Series methods (TS) (Wei, 1989) [(173)], such as Autoregressive Inte-

grated Moving Average (ARIMA) or Exponential Smoothing (ES) like Single Exponen-

tial Smoothing (SES), Damped Trend Time Series (DTTS) and Stationary Time Series

(STS) (Garcia, 2009) [(62)]. This way, Andrews (1995) [(5)] used the ARIMA model to

predict arrivals to L. L. Bean’s call centre, and highlighted the impact of holidays and

marketing campaigns on the arrival process. Instead, Bianchi (1998) [(23)] also used

ARIMA models and found that they outperformed simple Holt-Winters smoothing.

Another look at the literature reveals ARIMA and exponential smoothing forecasting

methods specifically designed for intra-day CC arrivals data like Taylor (2012) [(164)]

or Tych (2002) [(170)], where the authors proposed a new seasonal component model,

based on modulated periodic components, that was capable of replicating multiplicative

periodic components in an efficient manner.

Other authors have addressed related problems. Thus, Thompson (1996) [(165)]

investigated different options for adjusting intra-day schedules in the context of hos-

pitality workforce management. Hur et al. (2004) [(87)] proposed schedule updating

techniques in quick service restaurants. Easton et al. (2005) [(53)] faced absence re-

covery problems for service operations.

Finally, the problem of predicting call arrivals can be faced by an Artificial Neural

Network (ANN). Pacheco et al. (2009) [(144)] proposed an Improved Backpropagation

Neural Network which was compared to some basic learning algorithms for neural net-
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works (classic Backpropagation and Backpropagation with Momentum) as well as some

of the existing forecast methods covered by Van den Bergh (2006) [(20)]. The authors

claimed to slightly outperform the accuracy of the existing forecasting techniques al-

though these apparently tiny differences implied huge cost savings at the end of the

day. Afterwards, Millán et al. (2010) [(131)] provided a more exhaustive comparison of

the Improved Backpropagation Neural Network with the forecasting techniques given

by Van den Bergh (2006). Other authors like Darbellay and Slama [(45)] also used a

simple neural network for data of a similar style, reporting outstanding results. Setzler

et al. (2009) [(154)] also provided a comparative study of call volume predictions using

an ANN. In this work, the call volume is predicted at different temporal and spatial

granularities. The approach offered an improvement at low spatial granularity and at

hourly level.

3.2.3 Discussion

Now, we present a brief discussion about the positive points and existing limitations of

the above-described predictive techniques.

The main advantage of RM is the clearness to understand and track the model.

Nevertheless, it is hard to choose the variables to generate the model considering sea-

sonality and trend, which are crucial to better understand the behaviour of a DMAS.

Besides, the model may not reach convergence in some cases.

An important point for stationarising a TS is to be able to acquire meaningful

sample statistics such as means, variances, and correlations with other variables. Such

statistics are useful as descriptors of future behaviour only when the series is stationary.

This way, if the series is consistently increasing over time, the sample mean and variance

will consequently grow with the size of the sample, and they will always underestimate

the mean and variance in future intervals. If the mean and variance of a series are not
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properly defined, then neither are its correlations with other variables. For this reason,

it is important to be prudent about trying to extrapolate regression models fitted to

non-stationary data.

The main advantage of ES methods is that they require short computing times

[(7)], [(20)]. Nevertheless, the model cannot accurately predict for a long prediction

window [(122)]. Another setback of this technique is its low performance when there is

a trend as the single coefficient α is not enough to fit the outcome.

The principal advantage of ARIMA TS is that it usually suites better than ES

methods, although this model requires longer computing times [(41)] and also poorly

forecast for large time-horizons [(183)]. Given these premises, we can realise how

promising exponential smoothing is to forecast data with no trend or seasonal pat-

terns. Instead, DTTS should be applied whether there is linear trend. For shifting

data, ES is remarkably well-adjustable, although its speed depends upon α.

Figure 3.6: Overtraining risk - Volume of data.

On the one hand, the main advantage of ANNs is their flexibility to make patterns,

being suitable for large and complex datasets as well as long-term forecasting [(41)],

[(183)], [(124)], [(155)]. On the other hand, we can also find some disadvantages: longer

training times, risk of overfitting, need of a feature selection process and difficulty to

fine-tune all the required parameters [(183)]. The overfitting, also called overtraining,

is the consequence of reducing the error in a specific dataset. When an ANN is trained

during a large number of epochs (an epoch is the presentation of the entire training
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set to the ANN), the function determined by the weights of the ANN may take the

particular characteristics of the examples. If this happens, the results will be optimal

for the training dataset but no guarantee is given for any other one (see Figure 3.6

[(7)]).
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3.3 Combinatorial Optimisation Techniques for DMAS

Chapter 1 presented the two types of algorithms for DMAS we can find in the state-

of-the-art. There exists a kind of ad-hoc algorithms conceived for short-term planning

environments in which a permanent planning is required because of the high variability

of the system. Instead, there are other techniques devised for more stable (long-term

planning) environments. Nevertheless, when facing a dynamic system, the second ap-

proaches cannot be efficiently applied, since an adaptive method is needed.

In this section, we describe different techniques that could be applied to the prob-

lem of workforce distribution in dynamic multi-agent systems (stable environments are

out of the scope of this dissertation). Note that the purpose of this section is to briefly

describe these techniques rather than to deeply detail them as the reader can carefully

peruse the references provided in the following subsections, if desired.

3.3.1 Generic Optimisation Techniques

In the related literature, we can find numerous references to memetic algorithms that

were applied to different assignment problems. A very nice compilation can be found in

[(43)]. That work examined the application of MAs to different problems (scheduling,

planning and timetabling). The article also described the basic architecture of an MA,

and presented some guidelines for the design of a successful MA for those applications.

There are other alternatives in the state-of-the-art solutions. For instance, in

computer science, Local Search (LS) [(84)] is a Meta-Heuristic (MH) for solving com-

putationally hard optimisation problems. LS can be pertained to problems that can be

formulated as finding a solution by maximising or minimising a criterion within a set

of candidate solutions.

Frequently, the neighbourhood is composed by more than one solution where the
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choice of which one to move to is taken by only considering information concerning the

solutions within the neighbourhood of the current one. When we select a neighbour

solution taking the one, which maximises the criterion, then the MH is named hill

climbing.

LS based algorithms “navigate” the search space, jumping from a solution to an-

other one until a solution deemed optimal is reached or a given computing time has

been elapsed. Another common choice is to terminate when the best solution found

by the algorithm has not been improved in a given number of steps. LS algorithms

are typically incomplete algorithms, as the search may stop even if the best solution

found by the algorithm is not optimal. This can happen even if termination is due to

the impossibility of improving the solution, as the optimal solution can lie far from the

neighbourhood of the solutions crossed by the algorithms.

LS algorithms have been extensively applied to numerous hard computational prob-

lems, including problems from computer science, mathematics, operations research,

engineering and bioinformatics [(179)].

To conclude, we provide the pseudo-code adapted to the problem of the workforce

distribution in dynamic multi-agent systems, which illustrates the LS algorithm in its

basic form:
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void Local_Search (Chromosome & candidate_solution)

begin

Chromosome best_solution = candidate_solution;

Chromosome neighbour = candidate_solution;

for i← 0 to candidate_solution.size()− 1 do

Agent a = neighbour.getAgent(i);

for j ← 0 to a.get_number_profiles()− 1 do
neighbour.change_profile(i,j);//profile j for agent i

if (neighbour.fitness() > best_solution.fitness()) then

best_solution = neighbour;

end

neighbour = best_solution;

j++;

end

candidate_solution = best_solution;

i++;

end

end
Algorithm 1: Basic LS pseudo-code.

Another option consists of employing a Genetic Algorithm (GA) [(83)], [(71)].

GA is a class of adaptive stochastic optimisation techniques, which attempts to find ex-

act or approximate solutions for optimisation and search problems. GAs were proposed

by John Holland in 1975 [(83)]. GAs are also a particular class of Evolutionary Algo-

rithms (EA) that use techniques derived from evolutionary ideas of natural selection

and genetics such as inheritance, mutation, selection, and crossover or recombination.

It is important to highlight that GAs always work with a set of candidate solutions.

GAs are implemented in a computer simulation in which a population of abstract
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representations (called chromosomes or the genotype of the genome) of candidate so-

lutions (called individuals or phenotypes) to an optimisation problem evolves toward

more accurate solutions.

The evolution typically begins with an initial population of randomly generated

individuals and occurs over time by means of generations. In each generation, the fitness

of every individual in the population is evaluated, multiple individuals are selected from

the current population (based on either their fitness or composition), and modified

(recombined and randomly mutated) to compose a new population. The new population

is then used in the next iteration of the algorithm. Commonly, the algorithm ends up

when a given number of generations has been produced, after a period of time, or after x

generations without evolution, or a satisfactory fitness level has been accomplished for

the population. If the algorithm has ended up due to a maximum number of generations,

a satisfactory solution may or not have been reached.
Procedure Basic_Genetic_Algorithm

begin

Generate an initial population of individuals;

Evaluate each individual from the population;

while !stopping_condition do
Pick the best individuals for reproduction;

Breed new individuals by means of the crossover;

Apply a small perturbation over these new individuals;

Evaluate their individual fitness;

Replace the worst individuals;
end

end
Algorithm 2: Basic GA pseudo-code.

The application of aMemetic Algorithm (MA) [(133)] is another good candidate
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for solving our problem. MA represents one of the current growing areas of research in

EC. MAs are a population-based technique for heuristic search in optimisation problems

[(139)] [(140)] [(80)] . These are much faster than traditional GAs for many problem

domains. Fundamentally, these combine GA’s operators with LS heuristics (an LS

algorithm typically refines the solution obtained by the GA’s operators).

Conversely, the continuous application of LS as a refinement mechanism does not

guarantee a better performance. The frequency and the intensity characterise the level

of progression (exploration) in opposition to the refinement achieved (exploitation) in

the MA search. Thus, a more intense exploitation implies having more chances of

convergence to the local optima. Evidently, it highly depends on the stage where the

algorithm is, so it is broadly agreed that exploration should be more important at the

beginning of the process and exploitation should be performed at the end [(110)], [(13)],

[(12)]. However, we will see in this work that success can be achieved by dynamically

adapting exploration and exploitation, depending on the circumstances found in our

search.

For these reasons, some researchers have successfully denoted MAs as Hybrid GAs

while others consider them as class of MHs. Frequently, MAs are also referred to in the

literature as Baldwinian EAs, Lamarckian EAs, cultural algorithms, or genetic LS.
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Procedure Basic_Memetic_Algorithm

begin

Generate an initial population of individuals;

Evaluate each individual from the population;

while !stopping_condition do
Pick the best individuals for reproduction;

Breed new individuals by means of the crossover;

Apply a small perturbation over these new individuals;

Evaluate their individual fitness;

Replace the worst individuals;

Each g generations, refine the k best individuals with a LS procedure;

end

end
Algorithm 3: Basic MA pseudo-code.

Other authors have applied Dynamic Programming (DP) [(54)] for similar op-

timisation problems. DP is a technique, which basically breaks problems down into

smaller overlapping sub-problems. The philosophy of DP relies on solving problems

where we need to find the best decisions serially. DP takes less time than other meth-

ods when it is applicable, because the results of certain calculations are stored and can

be re-used by succeeding operations.

We can also find approximations with Branch and Bound (BB) [(113)] in related

works. BB is a broad-spectrum algorithm devised for discrete and combinatorial optimi-

sation problems. It systematically itemises all candidate solutions, from the uppermost

one to the lowest one, discarding unproductive candidates. Every node (candidate so-

lution) at a level l in the search tree corresponds to a partial sequence of p operations.

Differently to LS, Random Neighbour Search (RNS) consists in jumping from

a candidate solution to a random neighbour (note that basic LS sequentially explores
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the neighbourhood). If the hop implies an improvement of the candidate solution, the

best solution is updated and then considered as new candidate solution. This process is

carried out until a given computing time has been elapsed or a fixed number of random

neighbours has been generated.

Other possibility would be Variable Neighbourhood Search (VNS) [(8)]. VNS

is an MH whose fundamental idea is to cause a systematic, stochastic change of neigh-

bourhood within an LS. VNS escapes from local optima by changing of neighbourhood.

To achieve it, VNS increases the size of the neighbourhood until a local optimum, better

than the current one, is reached [(78)] . In this line, we can also find Variable Neigh-

bourhood Descent (VND) [(21)]. VND is an MH where the search is not restricted

to only one neighbourhood as in the LS but, instead, it deterministically changes at

the same time as the algorithm advances (predefined sizes for the neighbourhoods).

One of the most used approximations is Simulated Annealing (SA) [(101)]. SA

is an MH of variable search environment, which generalises Monte Carlo’s method.

SA proposes that the current state of a thermodynamic system is equivalent to the

candidate solution in optimisation, the energy equation for a thermodynamic system is

analogous to a target function and the ground state corresponds to the global minimum.

This technique has the ability to hinder getting trapped in local optima since the

algorithm allows for changes that decrease the values returned by the target function

with a given probability. This probability depends on the current temperature value,

which varies according to the cooling scheme. The main complexity is to determine the

right value for the initial temperature and the cooling scheme.

Other authors have used Tabu Search (TaS). The meaning of the word tabu (also

known as taboo) refers to a prohibition imposed by social customs as a protective mea-

sure [(69)]. In particular, TaS is based on the principle that search techniques should

incorporate adaptive memories and guiding exploration mechanisms. The adaptive
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memory [(66)], [(67)], [(44)] allows for the implementation of procedures that are ca-

pable of economically and effectively navigating the search space. These memories

introduce complexities that often confound alternative approaches as they allow for re-

striction of the search environment and the introduction of intensification mechanisms

in zones of the search space that have been already visited, or diversification in possible

zones of the search space, which are rarely visited [(44)] .

In contrast, Scatter Search (SS) [(68)] works over a set of solutions (reference

points) by merging them in order to produce new feasible ones. The combination of

solutions is commonly accomplished in a linear way. These combinations can be devised

as a feasible generalisation of the existing solutions.

However, the basic idea of Iterated Local Search (ILS) [(98)] is to concentrate

the search on a smaller subspace defined by the solutions, which are locally optimal to

the current one. ILS consists in the iterative application of an LS method. To avoid

getting trapped in local optimums, a perturbation is applied before executing each LS.

Other alternative to apply is Multi-Start Search (MSS) [(103)]. There are two

phases in MSS: initially, a feasible solution is generated and, afterwards, is normally

improved by means of an LS procedure. MSS is relatively simple because it merely

executes several LS’s from different initial solutions. The stopping condition for each LS

is then taken as a restarting criterion. The most imperative disadvantage of improving

each solution by means of an LS procedure is the possibility of getting ensnared in a non-

optimal local optimum. MSS heuristics are earmarked to obtain limited solutions as far

as the LS procedure cannot avoid escaping of non-promising environments. A key issue

for the performance of MSS is whether (or not) the information about the topology of

the neighbourhood (corresponding to the distance among neighbour solutions) is used.

TheGreedy Randomised Adaptive Search (GRASP) [(58)] is one among those

MSS methods whose first phase (constructive phase) randomly generates a greedy solu-
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tion. The second phase (refinement) iteratively improves every solution by applying an

LS procedure. Greedy randomised solutions are generated by injecting new elements

to the problem’s solution set from a list of elements ranked by a greedy function ac-

cording to the quality of the solution (problem dependent). This method provides an

appropriate and simple framework to develop algorithms for hard optimisation prob-

lems. The goal of this methodology is to combine the diversification strategy given by

the construction phase with the intensification given in the improvement phase.

Another famous technique in this line isAnt Colony Optimisation (ACO) [(50)].

ACO is a stochastic method, which can be applied to problems that can be simplified

to finding the right paths within a graph (usually, the shortest ones). Pheromone is

a chemical substance secreted by a living organism that transmits a message inducing

other members of the same species to react in a certain way. In our case, virtual

ants deposit pheromones once they have built their solutions. The release of such a

chemical signal, although systematic, is not constant. It is, instead, dependent upon

the heuristic desirability of transition. This pheromone release is carried out once the

solution is complete and is only updated when the loop ends. In order to refine the

ants’ generated solutions an LS procedure can be added to this algorithm. An ant a

chooses to go forward to the following node with a determined probability.

Finally, Particle Swarm Optimization (PSO) [(99)] is another technique, which

does not require any knowledge of the gradient of the problem to optimise. PSO

emulates the behaviour of a group of birds that are flocking. PSO keeps a population

of candidate solutions (particles) and then shifts them around in the search space in

accordance with a more or less straightforward formula.
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3.3.2 Discussion

With the purpose of summarising the previous descriptions, Table 2 shows the efficacy

of each strategy to find a nearly optimal solution on a real-world DMAS in relation to

the time-frame considered.

Table 3.2: Comparison of strategies’ efficacy on a real-world DMAS in relation to the
time-frame considered. MA is highlighted because it is our choice for this problem.

Algorithm Short-Term Efficacy Middle-Term Efficacy Long-Term Efficacy
MA low high high
ACO low low medium

Basic LS low medium low
BB low low high
DP low low high
GA low medium medium

GRASP low medium medium
GWB medium low low
ILS low medium medium
MSS low medium medium
PSO low low medium
RNS low low low
RWB low low low
SA low medium high
SBR medium low low
SS low medium high
TaS low medium high
VND low medium medium
VNS low medium medium

We can distinguish methods based on LS from those rooted in global search. Global

search takes into account the whole search space whereas LS approaches can be applied

to problems, which can be devised as finding a solution maximising (or minimising) a

criterion among a number of candidate solutions. An LS algorithm starts out from a

candidate solution and, thus, iteratively moves to a neighbour solution, generating the

neighbourhood until a solution deemed optimal is reached or a predefined amount of
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time has been elapsed. The main problem with LS methods is that these usually get

stuck in local optimums, which are often far from the global optimum. This setback

can be mainly mitigated in five distinct ways:

1. The first possible solution, exemplified by VND, is to modify the environment

(also known as neighbourhood). In VND, the search is not only restricted to one

environment as LS imposes; instead, the size of the environment deterministically

changes as the algorithm progresses. The change of environment is a technique

that is dependent upon the stage at which the algorithm is currently working.

2. The second possible solution is to permit deterioration movements, such as in SA

or TaS. In the SA method, each point of the search space is equivalent to a state

of some physical systems, and the function E(s) to be minimised is similar to

the internal energy of the system in that state. The aim is to bring the system,

from a random initial state, to a state with the smallest amount of energy. TaS

increases the performance of an LS method by employing memory structures.

Once a potential solution has been reached, it is marked as tabu so that, the

algorithm does not "visit" that possibility recurrently.

3. The third possible solution is to restart from another initial solution as MSS,

GRASP, ILS or VNS do. In the case of the MSS, initial solutions are randomly

generated and, afterwards, the algorithm applies an LS over them as a fine-tuning

mechanism. This is equivalent to executing several LS in parallel. Therefore,

the accuracy of the results will depend upon the number of executions that are

launched. However, this is an inefficient method because a conscious stopping

condition has to be provided. Conversely, ILS applies a mutation operator before

each execution to attain an intermediate solution, which is refined by an LS. VNS

(very similar to VND) is an ILS method, which changes of environment when the
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solution obtained is worse than the current one. Finally, GRASP relies on the

use of a randomised greedy in its basic version.

4. Another way to find a good solution involves using methods based on populations,

such as GAs and MAs. If the diversity of the population is low, then the GA

converges to the closest neighbour. In contrast, if the selective pressure is high,

which makes the diversity low, individuals will be alike or even identical. GAs are

a powerful global search technique that slowly converges to the global optimum

for a set of relevant real-world problems. MAs emerge as an improvement of

this mechanism in which an LS is applied over a subset of individuals each n-

generations.

5. Finally, there are other strategies to obtain a feasible solution such as constructive

methods (e.g. ACO), which develop a solution instead of refining a given solution.

The MHs presented above provide diverse methods to escape from local optima.

The empirical impact of these MHs has been immense. Diverse tendencies on MH

schemes have been explored by many researchers. The most relevant issue, provided by

the incorporation of such techniques, is to know whether the benefit of the performance

enhancement compensates for the effort of its implementation.

Frequently, trendy appealing heuristics are skilfully figured out. Also, great effort

and inventiveness has been deployed in the adjustment of numerous parameters, but as

yet the reasons that make them work still remain unknown. When facing a dynamic

real-world production environment, some techniques (we will present an empirical study

in Chapter 6) cannot perform well enough.

Intuitively, although RWB and RNS require low computing times, these will not

be appropriate for a real production environment as they do not guarantee accurate

solutions and their robustness is weak. A randomly generated solution can be acceptable
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as an initial solution, but not as a proper search mechanism. With luck on our side,

we might find a good solution, but we would rapidly notice that these methods do not

always perform properly. In fact, the probability of obtaining the global optimum is

1/nsl where nsl stands for the number of possible solutions in the search space. Imagine

a die with nsl faces (a very large number) with the added problem that we can only

throw that die nt times in each time-frame (where nsl » nt).

GWB and SBR “route” work items to the available agents by applying basic heuris-

tics, considering the current state of the system. Obviously, these techniques can be

perfectly employed in DMAS but these fast, unplanned decisions may guide the algo-

rithm to congestion states (evident need of a better planning, which takes into account

future states).

In basic LS, a neighbour is generated every iteration. Theoretically, due to its local

character, it is difficult to reach a high-quality solution because, when a local minimum

is found, the algorithm will often stagnate as deterioration movements are not allowed.

In VND and VNS, the search is not simply restricted to a single search environment,

but instead, the environment changes as the algorithm advances (deterministically in

VND and stochastically in VNS). Therefore, the improvement of basic LS is remarkable

as we will verify in Chapter 6.

TaS and SA introduce a very sophisticated mechanism of deterioration movements.

However, these techniques only perform better when the time-frame is not very reduced:

SA takes time even when we apply a Cauchy’s scheme, which is the fastest one and

TaS requires many iterations to take advantage of using the memory structures.

MSS increases the probability of finding an accurate solution as compared to basic

LS as many LS’s are run in parallel. In contrast, GRASP improves this philosophy by

means of a probabilistic greedy procedure. This greedy process reassures us that, on

one hand, that initial solution will be more or less promising and, on the other hand,
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that other local minima may be found, since the algorithm can start from different

initial solutions.

Constructive techniques (e.g. ACO), although they are a very promising growing

area, are not fast enough to be applied to real-world DMAS as [(49)] demonstrates.

Finally, GAs offer a different mechanism to finding precise solutions based on

a population schema. Generally, GAs converge very slowly to the global optimum

(sometimes there may be multiple optima) but, when these are combined with LS

procedures (e.g. MAs), GAs are an astonishingly powerful search technique. For this

reason, we will propose, in next Chapter, a search module based on a parallel MA.

71



.

72



Chapter 4

A Novel Approach to the Problem

of Workforce Distribution in DMAS

This chapter proposes a novel approach to the problem of workforce allocation in

DMAS, using ideas from different fields of artificial intelligence. In order not to di-

lute (nor blur) the scientific contributions exposed in this chapter, we will just focus

on the innovative general approach and its original proposals applied to each specific

component. The rest of details to fully develop these components is given in Chapter 5

and Chapter 6. Section 4.1 sets out the underlying idea of this novel approach. In Sec-

tion 4.2, we describe the methodology that we have followed. Section 4.3 explains how

to create a self-adaptive time-frame mechanism. Section 4.4 focuses on the predictive

component. Section 4.5 addresses the optimisation component of our approach.

4.1 Underlying Idea

We have illustrated in Chapter 1 how short-term planning techniques distribute tasks

to the next available agents having the required skills to process them by employing
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greedy heuristics, while long-term planning techniques contend with a stable incoming

task flow over time, which is not the archetypal scenario in nowadays DMAS. This

way, short-term planning strategies distribute workforce without considering future

system states (just the current global picture), causing inapt allocations task-agent in

the middle-term. In contrast, long-term planning strategies find optimal solutions for a

given system state, requiring long computing times. However, if the system is not very

stable, we might have serious problems in the future, because an optimal configuration

for the current system state may not be the best option for a forthcoming point in time.

The underlying hypothesis of this work, which will be proved and confirmed in

Chapter 6, is that most DMAS require accurate allocations of incoming tasks to the

right available agents, considering a self-adaptive time-frame, rather than continuous

naive/greedy assignments in real-time or static long-term configurations for remote

future system states. In highly dynamic systems, it is preferable to make strategic

planning for a middle-term time-frame (assuming certain noise as predictions are not

100% accurate) than to make poor planning for a short-term time-frame repeatedly.

We basically need to enlarge (or reduce) the observed time-frame and then forecast

the real system state in a future time point in order to apply more sophisticated search

algorithms, which can outperform short-term planning techniques. There, a need of

obtaining an exact prediction of a middle-term system state comes out. Subsequently,

a powerful search algorithm must find a feasible solution for the predicted system state,

thereby assuring a fair balance between diversity (exploration) and intensity (exploita-

tion) in order to meet with success [(161)].

The forecasting module will be founded on a ANN with a novel learning algorithm,

while the optimisation module will be based on a parallel MA with an external meta-

GA to automatically recalibrate its internal parameters depending on the dynamism of

the system.
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4.2 Methodology

Prior to explaining each component of our approach in detail, we will present the overall

process in order to clarify the steps to take.

Firstly, we need to determine the size of the prediction window, also denoted as

time-frame (v), where the system will be stable enough. During this time, we can

employ the system configuration given by an optimisation mechanism in the previous

time-frame. In the first iteration, we can use a configuration built from historical data.

Thanks to the adaptive time-frame, we can have knowledge of the time a deter-

mined configuration is adequate, so that after that time point, this configuration is no

longer valid. Therefore, we can infer that the size of the time-frame will not be fixed

over time and will depend upon the changes in the behaviour of the system (variability

in the arriving task flow). In order to study this variability, we will use dispersion met-

rics and time series that may trigger the system’s transition function. This function will

cause transitions between system states, which have associated a different dynamism

level (e.g. very low, low, medium, high or very high).

This way, we need to employ different system configurations for each time-frame

and, while a given configuration is being applied to the current state, a search module

must find the right setting-up for the next time-frame (note that it takes some time

to find a nearly-optimal solution). In order to perform this optimisation, we need to

predict all the variables involved in that future state by means of a forecasting module.

The algorithm below also describes the steps of our approach to better understand

the underlying idea.
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Procedure Approach to the problem of workforce distribution in DMAS

begin

Analyse the dynamism of the system with time series;

Set up the size for the time-frame;

Forecast all variables for next state (ANN) ;

Optimise the assignment among tasks and agents for that future state

(Parallel MA);

Go to next state;

end
Algorithm 4: Pseudo-code of our global approach.

Figure 4.1 illustrates the complete mechanism graphically, reflecting the points in

time where each component is running. This figure shows an example for 2 time-frames

of different sizes and illustrates the relationship between modules for these time-frames.
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Figure 4.1: Relationship between the components of our approach from a timeline

perspective.

Now, let us provide some more detail. If we start at time t0 and v0 is the size of the

current time-frame, the forecasting module predicts all the system’s variables at time

t1 = t0 + v0. At time t1, the system is about to suffer a transition to new system state.

From time t0 to time t1, we employ the allocation of tasks and agents that the search

module produced in the previous time-frame (from time t−1 = t0−v−1 to time t0, where

v−1 is the size of the previous time-frame) or information from historical records when

we launch the first iteration. Once we have predicted those future variables for t1 (by

means of an upgraded resilient back-propagation neural network), we launch the search
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module again to get the optimal allocation between agents and tasks for that future

state at t1, which will be applied in the following time-frame t2 = t1 + v1 (See Figure

4.2 for further information about the complete mechanism).

Figure 4.2: Overall process of the forecast module + search module.

The search module is implemented as a parallel MA with an external meta-genetic

algorithm to automatically self-tune all the internal parameters in accordance with the

variability of the system (preserving a fair balance between exploration and exploita-

tion). Thus, the meta-GA is launched over historical data in order to determine the
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best configuration for the internal parallel MA for different levels of dynamism. Note

that we will apply different parameter configurations for each level of dynamism because

the internal parallel MA will have more or less time to find a solution as the size of

the time-frame is variable. For the internal parallel MA, we propose an island topology

and migration operators for individuals exchanging. Each island corresponds to a single

MA. Each MA maintains a set (population) of abstract representations (chromosomes)

of candidate solutions (phenotypes) according to the problem described in Chapter 2.
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4.3 Adaptive Time-Frame

The mechanism of the adaptive time-frame in turn consists of two components: the

determination of the size of the time-frame (we continuously analyse the dynamism

of the system to determine the right size of the time-frame) and the state-transition

function (when the dynamism of the system changes significantly).

To address the first difficulty (size of the time-frame), we can set up predefined

time-frame sizes (see Figure 4.3), depending on the dynamism level of the system (e.g.

3 levels: low, medium and high). Obviously, this choice must be done according to

a previous, exhaustive statistical analysis. In our experiments, we have considered 5

levels depending on system variability: very low (v=3000 seconds), low (v=1500 sec-

onds), medium (v=300 seconds), high (v=120 seconds) and very high (v=60 seconds).

The reasoning for selecting predefined time-frame sizes is given by the requirement of

robustness that any real-world DMAS habitually imposes. If we enable the system to

automatically assign any size for the time-frame, we may crash down the system (for

instance, we may have 2 -second time-frames or 20 -hour time-frames, which might seize

up the system).
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Figure 4.3: Time-frame sizes depending on the dynamism level.

To deal with the second complexity (when to change of dynamism level), we must

determine the right state-transition function. This is a problem-dependent task and

we cannot claim any universal rule of thumb. Instead, we propose some guidelines to

accomplish with this arduous task. During the statistical analysis, we encourage the

reader to analyse smaller intervals than the time-frame (let us say 30 seconds). Then,

we should break down this interval into subintervals (e.g. 5 subintervals of 6 seconds)

to describe a time series. If a given point highly differs from the previous one, we should

not activate the state-transition function as peaks may crash down the system. But,

when the trend of the time series drawn by these consecutive points shows important

oscillations, we should switch to another dynamism level (e.g. if the tendency shows an

important dynamism decrement, we should then enlarge the time-frame by switching

to a less dynamic level).

In summary, we take into account the trend and dispersion of these consecutive
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time points with a double exponential smoothing time series as described in the state-

of-the-art section. With this input, we can cluster any time series into any of the

5 dynamism levels that we have defined, according to a similarity metric (we have

employed the Euclidean distance [(116)]).

Figure 4.4 shows an example of a 300 -second time-frame. For this time-frame, we

analyse a smaller (shifting) time-frame of 30 seconds with 5 equidistant consecutive

points (each 6 seconds). If we plot these points, we would have a time series (number of

arriving tasks at each time point). We may discover numerous possible situations but,

in this figure, we have only illustrated 6 different cases (bear in mind that a rigorous

statistical study must be performed to achieve it). Figure 4.4.A shows a very changing

time series (high dispersion without well-defined trend); therefore, the dynamism level

would be very high. Figure 4.4.B exemplifies a quite dynamic time series but with

fewer changes than Figure 4.4.A, so the dynamism level would be high. Figure 4.4.C and

Figure 4.4.D point up medium dynamism level because there is a clear trend (increasing

in Figure 4.4.C and decreasing in Figure 4.4.D). Figure 4.4.E illustrates a time series

without changes, therefore the dynamism level should be very-low. Finally, Figure 4.4.F

presents a time-series with few changes, thus, the dynamism level would be low.
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Figure 4.4: Example of different time-series within a shifting sub-time-frame.

Naturally, the sub-time-frame is a rolling time window that must be shifted in

relation to the time. Finally, note that we do not impose “sequentiality” when changing

of dynamism level as Figure 4.5 exemplifies. Arrows symbolise that we can reach every

state from any other state. Circles represent the dynamism levels. Note that we have

not plotted self-pointing arrows as no transition is needed but, of course, as any regular

Markov model [(127)], there is certain likelihood of remaining in the same state in next

time-frame.
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Figure 4.5: Potential dynamism level transitions.

Now, let us formalise the definitions exposed along this section. Denote the initial

state at time t0 as ξ0 where we know all system variables (W0, T0, A0, S0, P0). We just

mean that at the beginning (time t0), we know the number of pending tasks, their

types, the number of available agents, the potential skills and the prospective profiles

(we highly encourage the reader to briefly review Section 2.2 to refresh the meaning

of each variable). Also, denote the current state at time t as ξt(Wt, Tt, At, St, Pt) and

designate next future state at time t + v as ξt+v(Wt+v, Tt+v, At+v, St+v, Pt+v), where v

is the size of the current time-frame.

Finally, denote the state-transition function as δ : ξt/vdynamism_level → ξt+v. This

just means that every state ξt+v, depends on the previous state ξt and the transition

occurs each v seconds (size of the time-frame, which depends on the dynamism level).

The variables of a given state are directly visible to the observer.

Note that short-term planning strategies consider intermediate systems states (ξt <

ξintermediate < ξt+v), whereas long-term planning strategies take into account posterior

system states (ξt < ξt+v < ξposterior). Therefore, short-term planning strategies rely on
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smaller transition-state steps (δ) than our approach, while long-term planning strate-

gies hinge on longer transition-state steps (δ) than our approach. Graphically, this

characteristic can be seen in Figure 4.6. Notice that ξi stands for ξintermediate and ξp

represents ξposterior. Also, note that we have not plotted ξ0. In a real-world production

environment, we can set up an initial system configuration for ξ0 that considers histor-

ical records. From this first configuration for the initial state ξ0, we should employ the

mechanism we propose (prediction window determination based on system dynamism

+ current system state prediction + optimisation).

Figure 4.6: System states depending on the time-frame considered.
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4.4 Forecasting module

This section describes how to model a forecasting module founded upon an enhanced,

self-adaptive gradient-descent based learning algorithm (an upgraded resilient back-

propagation) to predict the volume of task arrivals at a forthcoming point in time.

Section 4.4.1 provides the required background to understand our learning algorithm

for neural networks. In Section 4.4.2, we formulate the mathematical basis of our

learning algorithm.

Note that our centre of attention will be the innovative features of the forecasting

module, not on the generic aspects of the inner ANN. The details of the ANN and the

particularisation of the application are given in Chapter 5 and Chapter 6.

We have presented a mechanism to determine the size of the time-frame as well as

a method to track the dynamism level. From this information, we need to forecast all

the system variables at time t+v. Obviously, even when the forecast is pretty accurate,

we are introducing some noise to the system as we are searching for nearly optimal

solutions for a predicted system state, which may slightly differ from the real future

state. In order to mitigate the impact of that noise, it is crucial to design a powerful,

accurate forecasting module, which can provide us with the best possible approximation

of next future system state.

Until now, we have presented copious numbers of variables from any ordinary

DMAS (see Section 2.2). Although we have to consider all these variables in order to

attain a feasible solution, uncertainty chiefly comes from the number of pending tasks

grouped by task types and the number of existing available agents having each skill. As

tasks continuously appear and require of a certain processing time to be executed, and

given that the size of the time-frame v is variable (a smaller number when there is great

dynamism or a larger number when there are few oscillations); we can assume that the

number of pending tasks and available agents at time t1 = t0 + v0 (apart from the new

86



incoming tasks) depends upon the number of pending tasks and available agents at

time t0 as some tasks may not be accomplished during these v seconds.

4.4.1 Background

BPAs can be categorised as multilayer perceptrons [(146)], which have non-linear acti-

vation functions [(82)] such as the logistic function [(100)], the softmax function [(30)],

the Gaussian function [(117)], among others [(142)], [(153)]. BPA denotes that any

error made by the ANN when returning an output during the training process, is sent

backwards with the purpose of learning and distinguishing what is right from what is

not. Errors are propagated backwards from the external nodes to the internal ones.

Therefore, BPA is employed to calculate the gradient error of the ANN with respect

to its adjustable weights. This gradient is often used in a simple stochastic gradient-

descent algorithm to find the weights that minimise that error. BPA simply takes the

derivative of the cost function with respect to the ANN parameters and then changes

those parameters in a gradient-related direction.

The most notorious problem with gradient-descent methods is the premature con-

vergence to local optima, which might be far from the global optimum. This problem

can be solved by applying global optimisation techniques. However, these techniques

normally require high training times, which are not always compatible with highly dy-

namic environments like DMAS. Nonetheless, other improved gradient-based learning

algorithms such as Resilient Backpropagation (Rprop) (Riedmiller, 1992) [(148)] with

more global information can be more appropriate.

Rprop is a robust ingrained modification of classical gradient-descent method. This

scheme tends to fine-tune an individual step-size to optimise each parameter. The mech-

anism to perform this action entails doing adaptations of these step-sizes by applying a

more or less complex heuristic, instead of considering proportional step-sizes to the par-
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tial derivatives. Note that classical gradient-descent algorithms calculate the steepest

descent direction by means of an Euclidean metric.

Classic Rprop just takes into account the sign of the partial derivative ∂Λε(t)
∂wij

(partial

derivative of the error measure with respect the weight between two neurons i and j)

in order to resolve the direction of the weight updating. When there is a change of

sign of the partial derivative between two consecutive time points, we can state that a

local minimum has been surpassed as there is a change of direction in the search space

surface. Besides, we have to update the weights and automatically adapt the step-size,

considering the sign the partial derivative.

Although we will see how to achieve this weight updating with classic Rprop and

our modification later on, we recommend reading the full description of Rprop algorithm

given in [(148)].

4.4.2 An Innovative Adaptive Learning Rate Algorithm for

Resilient Back-Propagation Neural Networks

Specifically, this thesis proposes an upgraded, adaptive modification of the standard

Rprop with weights backtracking (uRprop) learning algorithm in order to make the

learning phase more adaptive to environmental circumstances.

The main purpose is to properly determine the right weights of our ANN. A great

challenge is to find out how big step-sizes (learning rate speed) should be. Note that

selecting the right learning rate is always a laborious task.

Rprop produces an expected output that is compared to the well-known output

(real value) and this signal is then propagated, calculating the differentials among errors

in accordance with the weights (gradients). To update the weights between each pair of

neurons i and j (wij) after each pattern (epoch; [(24)]), we inspect the previous weights

as follows [(24)]:
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wij(t+ 1) = wij(t) + ∆wij(t) (4.1)

where ∆wij(t) can be formalised like so [(148)] (classical Rprop):

∆wij(t) =



∆ij(t) if ∂Λε(t)
∂wij

< 0

−∆ij(t) if ∂Λε(t)
∂wij

> 0

0 other case

(4.2)

where ∆ij(t) is the step-size and Λε is the error measure (it can be defined as a

normalised mean absolute error for the generalisation dataset between two consecutive

epochs). Weights updating ∆wij(t) is carried out until the stopping condition is met. In

our experimental analysis, we will employ a stopping criterion based on a fixed number

of epochs as we have hard computing constraints in our environment, but we could

otherwise have considered a fixed amount of elapsed time, a given error metric value, a

percentage of error, a number of epochs without improvement, etc.

Classical Rprop [(148)] (without weights backtracking) just takes into account the

change of sign of the partial derivative ∂Λε(t)
∂wij

(change of direction in the search space

surface). This precisely means that a local minimum has been surpassed because the

previous step-size taken has been too long. An important improvement to classical

Rprop was to include weight updates, thereby enabling backtracking movements [(159)].

Weight updating ∆wij(t) leads to adjusting ∆ij(t) by applying the following formula

[(89)]:
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∆ij(t) =



min(γ ·∆ij(t− 1),∆max) if ∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

> 0

max(∆ij(t−1)
µ

,∆min) if ∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

< 0

∆ij(t− 1) other case

(4.3)

where γ is a multiplying coefficient greater than 1 (γ > 1) to enlarge the step-size

and µ is a dividing coefficient greater than 1 (µ > 1) to shorten it, depending on the

surface of the search space. After an exploratory analysis, we have chosen γ = 1.4 and

µ = 2 for our experiments.

When ∂Λε(t)
∂wij
· ∂Λε(t−1)

∂wij
> 0, the signs of the derivatives do not change ("+" by "+" or

"-" by "-" is always positive). This means that we have not reached the local minimum

yet. Therefore, we increase the step-size until we have surpassed a local minimum

(∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

< 0). When (∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

< 0), there is a change of sign in ∂Λε(t)
∂wij

.

This implies that we have already jumped over the local minimum. When the local

minimum is surpassed, we change the sign of the gradient.

Authors like Jacobs (1988) [(94)] or LeCun (1998) [(114)] typically limit the step-

size with ∆min = 0 and ∆max = 50. Instead, we propose ∆min = 0.001 and ∆max = 30

as limits (∆min = 0.001 for the number precision needed and ∆max = 30 as this already

implies a long movement).

Up until now, we have defined how to adjust the step-size ∆ij(t) at time t, de-

pending on the sign of the partial derivative. But we still have to update ∆wij(t).

Tollenaere (1990) [(168)] proposed an important improvement to classic Backpropag-

tion, which laid in weight updates with backtracking (reverting a wrong movement or

step). Following the same reasoning, Igel and Husken (2003) [(90)] incorporated these

ideas into the classic Rprop, reverting only those movements that entailed a higher
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error measure. When the error measure was lower, the step was not reverted but the

direction of the gradient was changed.

Let us now elucidate our contribution. We distinguish three cases in Equation

(4.6) when there is a change of sign in the partial derivative (∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

< 0):

• the error measure is lower than the previous one so that we proceed as Igel and

Husken (2003) proposes (not reverting the step).

• the error measure is a small percentage larger than the previous one, so that we

interpolate the previous step-size, staying halfway.

• the error measure is much larger so that we revert the last step taken.

Our modification is based on weight backtracking movements but we also consider

local information of the search space surface by means of the previous error measure

Λε(t− 1). When there is a change of sign in the partial derivative, we compute ∆ij (t)

as defined in Equation 4.3. This way, we verify whether the current error measure Λε(t)

is a percentage α larger than the previous error measure Λε(t− 1) (i.e. α = 15%; note

that this threshold should not be greater than a 15−20%). When this occurs, we undo

the previous movement ∆ij(t−1) as we have not only surpassed the local minimum but

also gotten a much higher error measure. However, when the deviation is lower than

a percentage α but still larger than the previous error measure (we are further from

the local optimum but not extremely far away), we go back halfway as fully reverting

a movement leads us to wasting too many iterations. If we stay halfway between the

previous point of the search space and the current one (∆ij(t−1)
2 ), the probability of

getting closer to the local minimum increases 2 times in each step and the total number

of iterations needed to reach the local optimum decreases in accordance therewith.

Finally, when the current error measure is lower than the previous one, we do not

revert the movement but update the direction of the gradient. Hence, we propose
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to apply the following expressions for each wij according to the three cases we have

previously proposed:

if (∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

> 0)⇒

⇒



∆ij(t) = min(γ ·∆ij(t− 1),∆max)

∆wij(t) =


∆ij(t) if (∂Λε(t)

∂wij
< 0)

−∆ij(t) if (∂Λε(t)
∂wij

> 0)

0 other case

wij(t+ 1) = wij(t) + ∆wij(t)

∂Λε(t−1)
∂wij

= ∂Λε(t)
∂wij

(4.4)

else if (∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

< 0)⇒
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⇒



∆ij(t) = max(∆ij(t−1)
µ

,∆min)

∆wij(t) =



−∆wij(t−1)
2 if


(Λε(t) > Λε(t− 1))

&&

(Λε(t) < α · Λε(t− 1))

−∆wij(t− 1) if Λε(t) > α · Λε(t− 1)

0 other case

wij(t+ 1) =



wij(t)− ∆wij(t−1)
2 if


(Λε(t) > Λε(t− 1))

&&

(Λε(t) < α · Λε(t− 1))

wij(t)−∆wij(t− 1) if Λε(t) > α · Λε(t− 1)

wij(t) other case

∂Λε(t)
∂wij

= 0

(4.5)

else if (∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

= 0)⇒
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⇒



∆ij(t) = ∆ij(t− 1)

∆wij(t) =


∆ij(t) if (∂Λε(t)

∂wij
< 0)

−∆ij(t) if (∂Λε(t)
∂wij

> 0)

∆ij(t− 1) other case

wij(t+ 1) = wij(t) + ∆wij(t)

∂Λε(t−1)
∂wij

= ∂Λε(t)
∂wij

(4.6)

Note that our learning algorithm might sometimes get trapped in local minima

because we are looking at the error measure, which may be misleading when the search

surface has many oscillations (two close points may have very different error measures

associated). But, as compared to Rprop, our approach is faster and usually obtains

better results for reduced amounts of training time.

We have defined a generic modification of Rprop with weights backtracking algo-

rithm for ANNs but we still have to formalise the rest of problem-dependent parameters

of the ANN (topology activation function, inputs, outputs, hidden units, etc.). Section

5.1 describes how to fine-tune our ANN and specifies how to achieve this on a real-world

environment, which is the vast call centre of Telefonica.
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4.5 Search module

This section describes the key features of the search module (only the novel contribu-

tions as details are given in Chapter 5 and Chapter 6), which is the last component of

the architecture proposed in Figure 4.2 (second arrow). This block is implemented as

a parallel MA.

Once the forecasting module has provided us with all the predictions, the search

module optimises the assignment among task types and agents. The parallel steady-

state MA is devised as an island topology with migration operators for individuals

exchanging, where each island corresponds to a fully-functional steady-state MA.

For the configuration of the parallel MA, we employ a novel meta-GA algorithm

that determines the right setting for each level of dynamism. Of course, the meta-GA

only works with historical data and provides different outcomes depending the size of

the time-frame. When there is a system transition, we use the corresponding parameters

configuration for the parallel MA, so that the algorithm can explore or exploit the search

space, taking into account the time the system will be stable in the next time-frame.

This mechanism provides a more flexible and automatic parameter selection.

Section 4.5.1 provides the required background to understand our meta-GA and,

in Section 4.5.2, we explain its details.

4.5.1 Background

Some authors have already developed meta-GAs in the past. [(182)] was one of the

pioneers in using GAs to optimise problems over several real parameters. [(115)] pro-

posed an automatic fuzzy system design method that used a GA and integrated three

design stages. Their method determined membership functions, the number of fuzzy

rules and the rule-consequent parameters at the same time. [(38)] used a Meta-GA to
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investigate the evolution of parameter settings (genetic operators) for genetic and evo-

lutionary algorithms in the hope of creating a self-adaptive algorithm. [(136)] presented

and evaluated a method for estimating the relevance and calibrating the values of the

parameters of an evolutionary algorithm. The method provided an information theo-

retic measure on how sensitive a parameter was to the choice of its value. In [(137)], the

same authors proposed an advanced method that helped to calibrate the parameters of

an evolutionary algorithm in a systematic and semi-automated manner. The method

for relevance estimation and value calibration of evolutionary algorithm parameters was

empirically evaluated in two different ways. More recently, [(26)] made use of a Meta-

GA to optimise the parameters of a simple GA through an evolutionary process. They

addressed the problem of determining the electronic structure of long chain molecules.

The same year, [(156)] proposed a methodology for both optimal pattern selection and

tuning. They employed a robust GA to solve a project scheduling problem.

All these meta-GAs were focused on single GAs and MAs but we now propose a

meta-GA for parameter calibration that automatically tests out different islands, mi-

gration and replacement configurations. It entails a number of independently evolving

populations to determine the right setting-up of the internal parallel MA.

4.5.2 Meta-Genetic Algorithm for Parallel Memetic Algorithms

The chromosome of our meta-GA, which has 6 genes, follows an integer encoding

scheme. These genes refer to diverse parameters that affect the final performance of

the internal parallel MA (see Figure 4.7).
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Figure 4.7: Encoding of the Meta Genetic Algorithm.

Let us present the pseudo-code before going on with the explanation (see below).

Meta-GA for Parallel Memetic Algorithm

Generate a random population;
Evaluate the individuals’ fitness by running
...the internal parallel MA with current configuration;
Store configurations and associated fitness to
...avoid running those configurations again in the future;
generations← 0;

While(generations ≤MAXGenerations)

Select a subset of individuals;
Apply crossover;
Apply Mutation;
Check those configurations previously
...calculated and get their fitness values;
Run the internal parallel MA for new configurations;
generations← generations+ 1;

End While
Algorithm 5: Pseudocode of the Meta-GA for Parallel Memetic Algorithm

In our meta-GA, we encode each solution as an array of integers whose indexes rep-

resent each parameter and the array contents refer to the values that these parameters

can take. These genes can take the following values:

• Number of islands (from 1 to 12 populations).

• Topology (star, bidirectional ring, all-to-all).
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• Population size (from 4 to 100 individuals per island).

• Migration and replacement policies: Best-Fitted Individuals by Worst-Fitted In-

dividuals (BFI-WFI), Best-Fitted Individuals by Random Individuals (BFI-RI),

Best-Fitted Individuals by Best-Fitted Individuals (BFI-BFI), Best-Fitted Indi-

viduals by Most Different Individuals (BFI-MDI), Best-Fitted Individual + “An-

nealing” by Worst-Fitted Individuals (BFIA-WFI).

• Migration frequency (30 or 60 seconds).

• Amount of migrants (percentage from 10% to 30%).

The evolutionary operators of the meta-GA has been set up as follows:

• Fitness function: We measure the service level resulting from each configuration.

• Population size: The population contains 20 different individuals encoded as

hinted above.

• Initialisation: The initial population is randomly generated.

• Selection: Since the population needs to be bred each successive generation, we

have chosen a binary tournament selection.

• Crossover : The offspring inherits the common points in their parents and ran-

domly receives the rest of genes from them.

• Mutation: We apply a perturbation over each gene of the chromosome with a

probability of 0.1.
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Chapter 5

Particularisation of the Problem

and Details of the Solution

In Chapter 5, we describe the peculiarities of our specific environment (the multi-skill

call centre), showing the concrete adaptations we have carried out to deal with our

problem instances. In Section 5.1, we present some special adaptations for the forecast

module. In contrast, Section 5.2 points out some particular modifications for the search

module.
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5.1 Forecasting Module Adaptations and Details

This section elucidates the required tuning to adapt the forecasting module described

in the previous chapter to the MSCC’s environment. Note that our forecasting module

relies on a novel learning algorithm (for ANNs) that does not actually need any specific

adaptation to our environment but the architecture of the ANN demands some addi-

tional tuning. Our focal control over this architecture lies in the number of hidden layers

as well as the number of neurons in these layers because the number of input/output

neurons is given by the number of inputs and outputs we have.

As the number of available agents mainly depends on the agent timetable and the

number of drop calls is proportional to the number of incoming calls, we will mainly

focus on the prediction of incoming calls. The following sections justify the pertinent

configuration of our ANN for the MSCC’s domain.

5.1.1 Number of Layers

The number of layers of an ANN must be, at least, two (1 input, h hidden where

h ≥ 0 and 1 output). Sometimes, the hidden layer is not needed (e.g. simple linearly

divisible problems). In our case, we propose three layers (or 4 layers at most): 1 input

layer, 1 hidden layer and 1 output layer. Bear in mind that we necessitate a hidden

layer at least because our problem is nonlinear. Nevertheless, we do not mandatorily

need more than a hidden layer because we can well approximate every function by

utilising a single hidden layer with an arbitrarily large number of hidden units (universal

approximation property [(128)]). Of course, the more hidden layers we have, the more

accurate our prediction may be (more coefficients in the global regression formula of the

ANN). But, this increases the computing time to (re)train the network (more loops to

update the weights) and we have very limited time to accomplish this task in dynamic
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environments. Besides, adding more than a hidden layer aggravates the problem of

getting trapped in local minima [(24)].

5.1.2 Input Layer

The number of neurons of the input layer is given by the number of input attributes

we have. But, what attributes or features do we have in our environment? At a

typical MSCC, we can stumble on a wide variety of variables, which may range from

information of previous calls (number of calls, tendencies, mean processing times, etc.)

to contextual information (campaigns, peak hours, night shift timetable, etc.). We

can directly take this raw information but, sometimes, we have too many variables or

features to take them into account.

As we have much information and many dimensions (given by the input variables

and the values they can take), it makes sense to reduce the number of input vari-

ables. Moreover, sometimes, some input variables may even contribute to the ANN

with mutual (even identical) information because of the dependency among variables.

To mitigate the curse of dimensionality, feature selection appears as a promising

solution. Feature selection is the technique that consists of selecting a subset of relevant

features or variables in order to build robust learning models.

Choosing the right inputs from all information we have (e.g. 122 different input

variables in our case) is not trivial and is very important for obtaining higher perfor-

mance as having more predictors has the effect of adding new dimensions to the model

(more complexity). Since variable selection should not be defined ad-hoc, Principal

Component Analysis (PCA) [(95)] has been employed as Table 4 illustrates (first col-

umn stands for the relevance, second column refers to the component number and third

column is the component itself).

PCA is a statistical technique that converts a set of potentially correlated predictors
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Relevance ] Component
0.8514 1 0.182i_TENDENCIA_9 + 0.181i_TENDENCIA_18 + 0.179i_TENDENCIA_8 + 0.176i_TENDENCIA_17 + 0.167i_TENDENCIA_7...
0.7635 2 0.293i_LL_TOTALES_5 + 0.293i_LL_TOTALES_6 + 0.289i_LL_TOTALES_7 + 0.289i_LL_TOTALES_4 + 0.284i_LL_TOTALES_3...
0.6887 3 −0.213i_TENDENCIA_13− 0.191i_TENDENCIA_12− 0.19i_TENDENCIA_14− 0.178i_TENDENCIA_4− 0.176i_TENDENCIA_10...
0.6193 4 −0.245i_TENDENCIA_21 + 0.221i_TENDENCIA_11 + 0.221i_TENDENCIA_10− 0.219i_TENDENCIA_22− 0.205i_FLAG_21...
0.5563 5 −0.245i_TENDENCIA_33− 0.207i_TENDENCIA_28− 0.206i_FLAG_33 + 0.2i_TENDENCIA_43 + 0.199i_TENDENCIA_20...
0.4979 6 0.265i_TENDENCIA_38− 0.26i_TENDENCIA_27 + 0.227i_FLAG_38− 0.223i_FLAG_27− 0.196i_TENDENCIA_45...
0.4413 7 0.288i_TENDENCIA_26 + 0.244i_FLAG_26− 0.207i_TENDENCIA_32− 0.196i_TENDENCIA_33− 0.195i_TENDENCIA_3...
0.3861 8 0.257i_TENDENCIA_41 + 0.217i_FLAG_41− 0.208i_TENDENCIA_45− 0.205i_TENDENCIA_37 + 0.191i_TENDENCIA_7...
0.3323 9 −0.271i_TENDENCIA_1− 0.233i_FLAG_1− 0.202i_TENDENCIA_2− 0.197i_TENDENCIA_6− 0.19i_TENDENCIA_4...
0.2805 10 −0.34i_TENDENCIA_46− 0.291i_FLAG_46 + 0.283i_TENDENCIA_44 + 0.243i_FLAG_44 + 0.202i_TENDENCIA_35 . . .
0.2471 11 −0.45i_INTERV ALO_82 − 0.376i_MINUTOS_DIA+ 0.328i_INTERV ALO_8_1− 0.323i_INTERV ALO_4_4− 0.304i_HORA_PUNTA2 . . .
0.2232 12 0.416i_INTERV ALO_8_0 + 0.416i_NOCTURNO − 0.313i_INTERV ALO_8_1 + 0.308i_INTERV ALO_4_0 + 0.265i_INTERV ALO_4_1 . . .
0.2098 13 0.571i_INTERV ALO_4_5− 0.451i_INTERV ALO_4_4− 0.432i_HORA_PUNTA2− 0.184i_DIA_SEMANA_6 + 0.181i_MINUTOS_DIA . . .
0.1995 14 0.432i_INTERV ALO_4_3− 0.414i_INTERV ALO_4_2 + 0.244i_DIA_SEMANA_6 + 0.204i_DIA_SEMANA_5− 0.186i_DIA_SEMANA_2 . . .
0.1898 15 0.821i_DIA_SEMANA_2− 0.447i_DIA_SEMANA_3− 0.197i_DIA_SEMANA_1 + 0.166i_DIA_SEMANA_6− 0.15i_DIA_SEMANA_4 . . .
0.1802 16 −0.724i_DIA_SEMANA_4 + 0.524i_DIA_SEMANA_3 + 0.349i_DIA_SEMANA_6− 0.164i_DIA_SEMANA_5 + 0.112i_INTERV ALO_4_1 . . .
0.1706 17 0.725i_DIA_SEMANA_5− 0.478i_DIA_SEMANA_4− 0.423i_DIA_SEMANA_6 + 0.159i_DIA_SEMANA_0− 0.151i_DIA_SEMANA_3 . . .
0.1611 18 0.685i_DIA_SEMANA_1− 0.512i_DIA_SEMANA_3 + 0.313i_DIA_SEMANA_6− 0.222i_DIA_SEMANA_4− 0.207i_DIA_SEMANA_5 . . .
0.1516 19 0.828i_DIA_SEMANA_0− 0.487i_DIA_SEMANA_1− 0.188i_DIA_SEMANA_3 + 0.104i_DIA_SEMANA_6− 0.101i_DIA_SEMANA_2 . . .
0.1428 20 −0.689i_INTERV ALO_4_1 + 0.564i_INTERV ALO_4_0 + 0.191i_INTERV ALO_4_2− 0.181i_INTERV ALO_4_3− 0.158i_DIA_SEMANA_4 . . .
0.1351 21 0.443i_INTERV ALO_4_2− 0.364i_INTERV ALO_4_3− 0.32i_INTERV ALO_4_0 + 0.26i_INTERV ALO_4_1 + 0.182i_HORA_PUNTA . . .
0.1289 22 0.332i_FLAG_10 + 0.332i_FLAG_11− 0.169i_TENDENCIA_11− 0.169i_TENDENCIA_10− 0.16i_HORA_PUNTA . . .
0.1233 23 0.41i_FLAG_11 + 0.41i_FLAG_10− 0.186i_TENDENCIA_11− 0.186i_TENDENCIA_10 + 0.175i_TENDENCIA_20 . . .
0.118 24 0.597i_HORA_PUNTA+ 0.339i_DIA_SEMANA_6− 0.286i_INTERV ALO_4_3 + 0.252i_DIA_SEMANA_5− 0.196i_INTERV ALO_8_1 . . .
0.1132 25 −0.218i_FLAG_28 + 0.209i_FLAG_9 + 0.191i_FLAG_3 + 0.191i_FLAG_4− 0.188i_FLAG_33 . . .
0.1088 26 0.264i_FLAG_38 + 0.217i_TENDENCIA_45− 0.214i_FLAG_45− 0.209i_TENDENCIA_38 + 0.204i_FLAG_7 . . .
0.1045 27 0.296i_FLAG_27− 0.224i_TENDENCIA_27 + 0.22i_FLAG_30− 0.205i_FLAG_37 + 0.203i_FLAG_26 . . .
0.1002 28 0.275i_FLAG_20 + 0.224i_FLAG_13− 0.219i_FLAG_33 + 0.201i_TENDENCIA_1 + 0.191i_TENDENCIA_2 . . .
0.0961 29 0.249i_FLAG_26− 0.239i_FLAG_35− 0.214i_TENDENCIA_26− 0.207i_FLAG_32 + 0.207i_FLAG_28 . . .
0.0922 30 −0.258i_FLAG_41 + 0.234i_FLAG_37 + 0.23i_FLAG_39− 0.224i_TENDENCIA_44 + 0.221i_TENDENCIA_41 . . .
0.0884 31 0.282i_FLAG_11 + 0.282i_FLAG_10− 0.249i_FLAG_16 + 0.245i_FLAG_24 + 0.241i_FLAG_21 . . .
0.0852 32 −0.458i_HORA_PUNTA+ 0.349i_DIA_SEMANA_6 + 0.228i_DIA_SEMANA_5− 0.203i_FLAG_9− 0.18i_DIA_SEMANA_0 . . .
0.0822 33 0.274i_FLAG_36− 0.266i_FLAG_45 + 0.239i_FLAG_4− 0.234i_FLAG_15 + 0.228i_FLAG_35 . . .
0.0792 34 0.276i_HORA_PUNTA− 0.271i_FLAG_30 + 0.243i_FLAG_42 + 0.219i_FLAG_38− 0.218i_FLAG_29 . . .
0.0763 35 −0.337i_HORA_PUNTA− 0.325i_FLAG_45− 0.299i_FLAG_12− 0.262i_FLAG_3− 0.257i_FLAG_29 . . .
0.0733 36 −0.314i_FLAG_14− 0.312i_FLAG_39− 0.276i_FLAG_21− 0.265i_FLAG_40− 0.247i_FLAG_38 . . .
0.0705 37 0.328i_FLAG_41− 0.301i_FLAG_7− 0.278i_FLAG_45 + 0.258i_FLAG_42 + 0.245i_FLAG_1 . . .
0.0676 38 0.433i_FLAG_1− 0.36i_FLAG_46 + 0.312i_FLAG_2− 0.29i_FLAG_8 + 0.261i_FLAG_44 . . .
0.0648 39 0.515i_FLAG_46− 0.303i_FLAG_44 + 0.291i_FLAG_1 + 0.259i_FLAG_17 + 0.244i_FLAG_24 . . .
0.0622 0 0.568i_FLAG_2− 0.503i_FLAG_1− 0.277i_FLAG_19 + 0.257i_FLAG_12 + 0.199i_FLAG_25 . . .
0.0597 41 −0.393i_FLAG_26 + 0.364i_FLAG_45− 0.348i_FLAG_19 + 0.293i_FLAG_37− 0.261i_FLAG_2 . . .
0.0572 42 0.584i_FLAG_32− 0.366i_FLAG_41− 0.344i_FLAG_44 + 0.218i_FLAG_43 + 0.206i_FLAG_40 . . .
0.0548 43 −0.583i_FLAG_37− 0.404i_FLAG_43− 0.324i_FLAG_19 + 0.281i_FLAG_38 + 0.259i_FLAG_39 . . .
0.0524 44 −0.508i_FLAG_26− 0.44i_FLAG_12 + 0.314i_FLAG_20− 0.237i_FLAG_1 + 0.227i_FLAG_2 . . .
0.05 45 0.467i_FLAG_32 + 0.432i_FLAG_41 + 0.414i_FLAG_44− 0.289i_FLAG_42 + 0.216i_FLAG_46 . . .

Table 5.1: Ranked attributes.

into a smaller subset of uncorrelated predictors designated as principal components.

The main advantage of PCA is the capability to compress data by reducing the number

of dimensions without significant loss of information. However, PCA assumes that data

dimensionality can be properly reduced by linear transformations. This problem can be

removed by means of complementary dummy variables that are non-linear functions of

the input data set elements. Another disadvantage of PCA is that the directions that

maximise variance do not always maximise information.

To select the right generic inputs for any CC, we have compiled real data from 3

months and have used the R-Weka [(175)] framework in order to determine the right

inputs to our ANN (see Table 5.1).

Among all variables (we have created trends, flags, rates, etc.), the volume of
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incoming calls in previous intervals, size of the time-frame, night shift timetable, week

of the month, time, intervals of hours (broken down in blocks of 2, 4 or 8 hours) and

intervals of peak hours must be highlighted and analysed for separate.

Figure 5.1 shows the behaviour when factoring in the previous time intervals. For

almost all CGs, the optimum number of previous intervals required is usually around

5-6 intervals. Considering more previous intervals does not enable us to obtain better

results and makes the learning process slower.

Figure 5.1: Mean absolute error returned by the ANN when considering previous 5-

minute intervals.

Figure 5.2 illustrates a summary of the most relevant variables that have been

studied in terms of error caused separately (not linearly combined with PCA). The

night shift timetable offers an upgrading of the results for every CG. When splitting

days up into intervals of hours, predictions are also improved. The improvement coming

from adding these hourly intervals might guide us to a wrong decision because these

variables are correlated with the current number of incoming calls (our target) but the
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causality comes from the night shift timetable and peak time variables. It is more

valuable to know peak hours rather than have the whole hourly information catalogue.

Note that the correlation among variables does not necessarily imply causality. In other

words, the improvement is just obtained because these variables are correlated but only

peak time intervals and night shift are truly useful to forecast the current number of

incoming calls. Of course, PCA moderates the impact of these deceptive correlations.

Figure 5.2: Mean absolute error returned by the ANN when adding different variables.

Intervals of peak hours are interesting to take into account because these divisions

clearly outperform the results for almost all CGs. However, the improvement is intu-

itively a bit lower for those CGs without many oscillations as there are fewer differences

among day partitions.

The rest of variables influence the results in some CGs (like the week of the month)

but not significantly enough for most of them (they slightly contribute to the target

of the prediction). Since a quick response time is required and selecting more features
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Individual relevant variables
Size of the time-frame

# Calls in Previous 0-5 Minutes
# Calls in Previous 5-10 Minutes

Night Shift Timetable
Week day

# Calls in Previous 10-15 Minutes
# Calls in Previous 15-20 Minutes
# Calls in Previous 20-25 Minutes

Minutes of the Day
Peak Time

Second Peak Time

Table 5.2: Summary of the most relevant individual variables.

involves a higher dimensionality, these variables have not been expressly included in

our final implementation.

As showing all the components obtained when applying PCA may be hard to track,

Table 5.2 summarises the most relevant individual features extracted from our dataset.

5.1.3 Hidden Layer

We have already revealed that our ANN has a single hidden layer. Now, we have to

determine the number of existing hidden units (hidden neurons) located in this layer.

There are some rule-of-thumb mechanisms to establish the right number of neurons of

the hidden layer(s) but, in our case, this number has been empirically determined.

Figure 5.3 shows the results obtained for a variable number of hidden units. We

can appreciate that the optimum value seems to be around 20 hidden units as MAE

gets minimised.
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Figure 5.3: Mean absolute error, depending on the number of hidden units.

5.1.4 Output Layer

The last layer is named output layer and is used for unveiling and returning the result

of the prediction. The number of neurons forming this layer is given by the number of

output variables. In our case, only one variable is predicted (total number of incoming

calls per CG) so that only one neuron forms the output layer. The output is a floating

number, which indicates the number of incoming calls of a given CG (we need as many

ANNs as CGs we have). As we may need multi-step forecast, we work over a rolling

window so that predictions are then used as inputs for next iterations.

5.1.5 Parameter Initialisation

The neuron activation function that we have employed is the sigmoid function as it is

very appropriate for dynamic environments. As for the weights between neurons, these

are randomly initialised and then updated during the training process. In particular,

we set them up to small values ranged in [−0.5, 0.5]. The idea of initialising the weights
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Call Group MAE With Sets MAE Without Sets
CG 1 2.84524 2.87196
CG 2 2.34671 2.39941
CG 3 4.32158 4.44656
CG 4 1.40664 1.41888
CG 5 0.83214 0.94906

Table 5.3: MAE obtained for 5 different CGs with/without sets for 50 executions.

in this way is to reduce the number of epochs during the training process. Starting

from weights that are closer to the required ones will perceptibly entail fewer changes

in the training process.

Additionally, we can still outperform the results by including some specific knowl-

edge of each CG. The large number of CGs (1035 ) and their miscellaneous behaviour

make necessary to appropriately determine the initial parameters of the models (ANNs

for each CG). To fulfil this requirement, the CGs have been divided into sets according

to the mean number of incoming calls per day. This criterion has been taken as a con-

sequence of the behaviour similarities of those CGs having similar volume of incoming

calls. Therefore, we need to define different initial configurations for the step-sizes for

these sets as well as the lower and upper bounds of the uRprop proposed in Section

4.4.

Table 5.3 demonstrates that we can still outperform the results a little by starting

from different initial parameters depending on the CG behaviour. This table sum-

marises the mean absolute error (MAE) gotten for 5 different CGs after 50 executions

of their specific ANN.

The change proposed above does not vary our computing times but (slightly) im-

proves the results, especially in those CGs that have more fluctuations in the arriving

load.
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5.1.6 Stopping Criterion

We consider the following measures to decide when to stop the training process:

1. Maximum epochs reached: the ANN will stop once a set number of epochs have

elapsed (1200 ).

2. Generalisation set mean squared error : this is the average of the sum of the

squared errors (real vs predicted values) for each pattern in the generalisation set

(MSE < 1 incoming call).
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5.2 Search Module Adaptations and Details

5.2.1 Encoding

Our solution consists in an integer representation. We just need an array of integers

whose indexes represent the available agents, At ⊆ A, at a given instant, t, and the

array contents refer to the profile, Pj, assigned to each agent ai (<P1, ..., Pi, ..., Pl>).

Then, tasks are “routed” to the agents, according to the profiles assigned. Of course,

we can also encode the solution as an array of integers whose indexes symbolise the task

types and its respective contents represent the number of agents assigned to each task

type. This option is recommended whether there are too many agents and hardware

capacity is very limited (with respect the total number of available agents). In contrast,

we are missing the capability of working at agent’s profile level. As we have not this

capacity constraint, we will employ the first codification proposed.

Figure 7.4 shows a fictitious example of encoding for 10 work items (w0, ..., w9)

grouped in 3 different tasks types (t0, ..., t2) depending on the nature of the tasks,

5 agents (a0, ..., a4) and 4 skill profiles (P0, ..., P3), where P0 = {s0, s1}, P1 = {s1},

P2 = {s2} and P3 = {s1, s2}. Now, suppose that a0 ∼ {P0, P1}, a1 ∼ {P0, P2},

a2 ∼ {P1, P3}, a3 ∼ {P2, P3} and a4 ∼ {P0, P1}. We have seen the potential profiles

for every agent but only one profile can be assigned to each agent at a given instant t;

therefore, a feasible solution would be Figure 7.4 (a0 and a4 have been assigned to the

profile P0, a1 and a3 have been assigned to the profile P2, while a2 has been assigned

to the profile P1). This way, a0 and a4 can process task types t0 and t1; a1 and a3 can

process the task type t2; and a2 can process the task type t1.
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Figure 5.4: Example of encoding for 5 agents.

The population of our MA is a compilation of chromosomes encoded as hinted

above. In our case, we propose to start from a random initial population, including

the best solution found in the previous time-frame because the configuration of agents’

profiles should not change too much over two successive time-frames.

5.2.2 Fitness Function

Now, we present the fitness function that is defined over the proposed encoding to

measure the quality of a given solution. Our fitness function is inspired in the estimation

of the total service level provided in [(106)] although we also consider the priority of

each CG weighted as follows:

TotalServiceLevel =
k∑
i=0

(Pri · SLi(γi, αi)) · µ {SL : <X[0, 1]X[0, 1]→ [0, 1]} (5.1)

where k refers to the number of CGs, µ is a normalising factor ( 1∑k

i=0 Pri
), Pri is

the priority of the CGi whose service level is defined as:

SLi(γi,mi) = 1− P (Agents_are_busy) · e−(γi−mi)
τi
β (5.2)

given that:
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P (Agents_are_busy) =
1 + γi −mi

mi

·
γi−1∑
ζ=0

(γi − 1)...(ζ + 1)
mγi−ζ−1
i

−1

(5.3)

where γi is the load of CGi (number of incoming calls of CGi by the mean pro-

cessing time: ni · τi ), mi is the number of agents of CGi (based on the profiles assigned

in the chromosome), τi is the number of agents of CGi and β is the duration of the

time-frame expressed in seconds.

Additionally, we handle some hard and soft constraints derived from the business

rules given by our business units. In our case, these constraints are associated to tasks,

agents, timing, actions or desired/undesired scenarios. Thus, the algorithm cannot

violate hard constraints (e.g. we cannot change agents’ profiles continuously due to

certain laws and regulations); although we allow certain movements, which may imply

the violation of some soft constraints (e.g. we should not take agents from CGs in which

the service level is below a given threshold). Undoubtedly, this type of movements is

penalised according to the degree of non-accomplishment of these constraints and their

relevance as described in Chapter 2. Therefore, the fitness function can be formalised

as follows:

f = (total_service_level − penalisations_constraints) f : [0, 1]x[0, 1]→ [−1, 1]

(5.4)

where penalisation_constraints is the value obtained after applying our business

rules (e.g. agents from CG-i should not move to CG-j).

Finally, we can speed-up the evaluations by introducing a partial fitness function.

The first time, we need to employ (5.4) but the rest of the time; we just need to evaluate

those groups affected by a mutation or, in the case of the LS, when generating a new

neighbour. Hence, we only process the affected CGs in (5.1) and update their original
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values. With this information, we then recalculate (5.4).

5.2.3 Evolutionary Operators (Classic and New Operators)

In this subsection, we explain potentially appropriate evolutionary operators, which

may be applied to the problem described in Chapter 2, given the encoding we are

proposing in Subsection 5.2.1. This section does not attempt to cover all feasible

evolutionary operators, just those that we consider, to the best of our knowledge, the

most relevant ones for DMAS. Some of these evolutionary operators are innovative but

others are not (this is specified for each one).

5.2.3.1 Selection Operator

Since the population must be bred each generation, several individuals are chosen for

recombination. In the state-of-the-art, one can find the following ones:

• Random Selection: consists in randomly selecting a configurable percentage of

individuals for potentially recombining them.

• Tournament selection [(132)]: implies executing t tournaments among some ran-

domly chosen individuals from the population. The individual who has the best

fitness is selected for recombination. When t is larger, individuals with worse

fitness have fewer chances to be selected (t indirectly determines the selective

pressure).

• Roulette-wheel selection [(83)]: associates a probability of selection with each

individual chromosome. The probability of selecting a chromosome is proportional

to its fitness or rank (survival of the fittest).

• Truncation selection [(134)]: removes a predetermined percentage of the candi-

dates with worst fitness.

112



• Ordered selection [(180)]: randomly picks a chromosome from the top N percent

of the population.

• Best: merely selects the best chromosome in terms of fitness. When there are more

than two chromosomes with the same fitness, one of them is randomly chosen.

5.2.3.2 Mating Operator

The purpose of this operator is to mate individuals (which individual should reproduce

with another one). We can hit upon the following techniques:

• Random mating [(65)]: randomly mates individuals for posterior crossover.

• Fitness-based mating [(70)]: selects pairs of individuals with the highest difference

in terms of fitness (best fitness individual will be mated with the worst fitness

one). The idea is to potentially provide the EA with a fast diversity mechanism.

• Similarity mating [(93)]: selects pairs of individuals having more differences in

terms of genes in their chromosomes. This mechanism provides real diversity to

the EA but it is time-consuming.

5.2.3.3 Crossover

This operator combines individuals to produce several children (offspring). The key

idea behind the recombination of individuals is to potentially obtain other better fitted

individuals:

• One-point crossover [(76)]: chooses a random point on both parents’ chromosomes

(the same point for both parents). All the genes previous to this point are copied

from one of the parents (randomly chosen) to one of the children (also randomly

chosen). The genes beyond this point from the first father are arbitrarily copied
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in the other child and the ones from the second father are arbitrarily copied to

the other child as Figure 5.5 illustrates.

Figure 5.5: One-point crossover.

• Multi-point crossover [(160)]: selects N random points on both parents’ chromo-

somes (the same points for both parents). Each piece of chromosome from the

parents is alternatively copied to each child as Figure 5.6 shows.
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Figure 5.6: Multi-point crossover.

• Cut-and-splice crossover [(83)]: consists of selecting 2 different random points

(one in each parent). One piece of father-1 ’s chromosome is then copied to a

randomly chosen child. The same action is accomplished for father-2 in the

opposite child. The rest of genes are randomly copied (see Figure 5.7).
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Figure 5.7: Cut-and-splice crossover.

• Probability crossover: considers that children will inherit the common points in

their parents (potentially, the best genes) and randomly receive the rest of genes

from them. This probability can be the 0.5 (uniform crossover [(162)]) or pro-

portional to the fitness.

We also propose to assign this probability in a more complex way such as simulated

annealing does [(101)]. At the beginning of the process, when the temperature

is higher, we can explore more by applying a probability of 0.5 and, when the

temperature starts cooling off, we can give more probability to the best fitted

individual as follows:

Pr0(bestfitted) = 0.5(initialprobabilityforbestfittedparent).

P ri(bestfitted) = 0.5 + v/Ti(probabilityforthebestfittedparentatgenerationi).
(5.5)
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where Ti is temperature at iteration i (the probability of giving a higher weight

to the best fitted individual increases when the temperature decreases) and v is

a factor to return values between 0 and 0.5.

Simulated annealing has different schemes to decrease the temperature but they

all decrease non-linearly. Another option is to increase the probability according

to the number of generation generated as follows:

Pri(bestfitted) = 0.5 + v/Gi (5.6)

where Gi stands for the generation number i and v is a factor to return values

between 0 and 0.5.

All in all, the idea is to choose a probability for recombination and we have several

mechanisms to achieve this task as Figure 5.8 confirms.

Figure 5.8: Probability crossover.
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5.2.3.4 Mutation Operator

This operator causes tiny changes in the chromosome of individuals to explicitly main-

tain diversity. It applies a perturbation over each gene of the chromosome with a given

probability. This perturbation corresponds to changes of profiles in some agents (e.g.

agent a2 who had assigned the profile P1 has now associated the profile P3 due to a

mutation).

5.2.3.5 Replacement Policy

Finally, we decide which individuals are incorporated (or maybe reinserted) into the

population for the next generation.

• Generational [(172)]: After recombination, the offspring generated by the selected

parents fully replaces them. The selection strength is low when this scheme is ap-

plied (slow convergence). However, it potentially converges to the global optimum

when enough generations are generated.

• Steady-state [(172)]: After crossover, the offspring generated by the selected par-

ents may replace them if these are best fitted. There are numerous policies for

individuals’ replacement:

– Elitism [(35)]: best fitted individuals fully replace the worst ones (quick

convergence).

– Random replacement: randomly chooses the individuals from the parents and

children set. With certain probability, worst fitted individuals may replace

the best ones.

We also propose some novel replacement schemes:
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– Boltzmann criterion [(101)]: The best fitted individual is chosen and another

one (which may not be the second best fitted individual) is inserted with a

given probability as simulated annealing does.

– Similarity criterion: we propose to select the best fitted individual and its

most different one in terms of genes.

– Taboo criterion: we also propose another scheme, which lies in storing a list

of non-promising individuals (based on their age for instance) in order to

avoid inserting duplicated or inappropriate individuals. This option imposes

additional memory requirements and more evaluations. Instead, we save up

so much time in incorporating useless individuals during a given amount of

time or iterations.

5.2.3.6 Refinement Method

MAs are quicker than traditional GAs for many problem domains because these apply

an LS procedure. The present section describes the refinement method we propose.

LS is an MH for solving optimisation problems. An LS algorithm starts out from a

candidate solution and, thus, iteratively moves to a neighbour solution, generating the

neighbourhood. To carry out this action, a neighbourhood relation must be defined on

the search space. In our case, we state that two candidate solutions are neighbours if

only one gene differs in both chromosomes. Note that we propose a “simple” LS due

to the lack of time of a dynamic environment but a more complex LS mechanism may

be used when computing times are more flexible.

The following pseudo-code illustrates the LS algorithm:
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void Local_Search (Chromosome & candidate_solution)

begin

Chromosome best_solution = candidate_solution;

Chromosome neighbour = candidate_solution;

for i← 0 to candidate_solution.size()− 1 do

Agent a = neighbour.getAgent(i);

for j ← 0 to a.get_number_profiles()− 1 do
neighbour.change_profile(i,j);//profile j for agent i

if (neighbour.fitness() > best_solution.fitness()) then

best_solution = neighbour;

end

neighbour = best_solution;

j++;

end

candidate_solution = best_solution;

i++;

end

end
Algorithm 6: Basic LS pseudo-code.

Another relevant task is to decide the right frequency, which should be considered to

apply the LS over the population and how many individuals must be affected. Chapter

6 will suggest an LS frequency and a percentage of affected individuals for the multi-skill

call centre use case.
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5.2.4 A Parallel Model

Roughly speaking, parallel implementations can be categorised into coarse-grained and

fine-grained implementations (Cantú-Paz, 1998) [(31)]:

• Coarse-grained: these approaches maintain a population on each computing node

where individuals are migrated according to a given policy.

• Fine-grained: these implementations keep an individual on each processing node,

which operates as a neighbour for selection and reproduction.

• Other variants, like genetic algorithms for online optimisation problems, introduce

time-dependence or noise in the fitness function.

Note that our approach can be encapsulated in the group of coarse-grained im-

plementations. Specifically, we will employ an island model where there are multiple

interconnected islands (see an example in Figure 5.9).

Figure 5.9: Example of the island model for 4 subordinate islands and 1 master island

with a star topology.

It is not always straightforward to control the internal dynamics of a parallel

Memetic Algorithm based on the island model, especially while seeking to ensure a
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fair balance between exploration and exploitation in a dynamic real-world environ-

ment. In real production environments, engineers do not always have enough time to

test out and compute all the possible combinations to determine the optimal island

connectivity configuration as there are many factors that may have an effect on the

overall performance and accuracy (number of islands, topology, migration and replace-

ment policies, amount of migrants, frequency of migrations, number of individuals in

each island, type of synchronism, etc). This problem is even more severe when dealing

with dynamic optimisation under uncertainty such as in the Multi-Skills Call Centre

problem.

5.2.4.1 Background

Determining the right configuration for a parallel MA is not truly a new issue as many

authors have already worked on finding an appropriate setting-up. In 1987, Pettey

(1987) [(145)] put forward a distributed model in which the best-fitted individuals of

each node were migrated to each neighbour node in each generation, fully replacing the

worst-fitted individuals of those neighbours. Almost at the same time, Tanese (1987)

[(163)] proposed a parallel implementation where each population was broken into a

small number of subpopulations. Afterwards, each subpopulation was assigned to (and

processed in) a different processing node within the system. The island model proposed

in Cohoon (1987) [(39)] is an implementation of a distributed scheme where the idea

of random migrant selection and replacement was put forward. In this proposal, each

island was an isolated entity, which was capable of selecting individuals, crossing them

and evaluating their fitness value.

After that, Gordon (1992) [(73)] as well as Adamidis (1994) [(1)] reinforced the term

of island model in their parallel proposals, while Collins (1992) [(40)] launched a grid

model where individuals were placed in a node and interacted with their neighbours.

122



In 1995, some authors went into the migrants’ selection in greater depth. This way,

Belding (1995) [(19)] established an approach where the first n individuals were selected

as migrants in relation to a predefined order.

Whitley (1997) [(177)] underlined that migration in parallel implementations caused

additional selective pressure whereas Nowostawski (1999) [(141)] proposed a new tax-

onomy for PGAs based on a dynamic demes model. Special mention for Cantú-Paz

(1998-2000) [(31)]-[(33)] who provided the most complete review of the state of the art

on PGAs. Then, Alba (2001) [(3)] highlighted the importance of using asynchronous

policies. In all the experiments conducted, asynchronous algorithms outperformed their

equivalent synchronous counterparts in real time. Hu (2002) [(86)] described a model,

which is inspired by the stratified competition frequently seen in society and biology.

The proposal defined stratified levels with fitness value limits. Individuals moved from

low-fitness subpopulations to higher-fitness subpopulations whether they surpassed the

fitness-based admission threshold of the receiving subpopulation. Higher fitness levels

implied higher selection pressure (exploitation).

More recently, Lozano (2008) [(120)] put forward an explicit measure of diversity,

which entailed the replacement of existing individuals with lower values for the features

being measured. The authors claimed to outperform existing replacement strategies

presented in the literature, maintaining high levels of diversity. In contrast, Ruciński

(2010) [(151)] examined the impact of the migration topology on an island model. This

study compared different topologies and migration strategies in large networks. The

authors concluded that the migration topology was a key factor to enhance the per-

formance of a parallel global optimisation algorithm. Particularly, they recommended

the use of ring topologies and suggested avoiding fully-connected and Barabasi-Albert

topologies where a fast information spread over the entire network was allowed.

The most recent work on this topic, which went one step further, is Araujo (2011)
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[(10)]. The authors investigated, on a real parallel setup, a new strategy to enhance

diversity in an island model. The proposal focused on the migrant selection phase of a

genetic algorithm, taking into consideration the genotypic differences of the immigrant

individual, which was incorporated in a receiving subpopulation.

5.2.4.2 Topology

As previously mentioned, we have employed an island model in which every processing

node is a steady-state MA. The topologies we will analyse are the following ones (see

Figure 5.10 for a better understanding):

• Star topology: We consider multiple subordinate islands, which correspond to

simple steady-state MAs. These islands are connected to a master island (an-

other simple steady-state MA), which coordinates and synchronises the rest of

subordinate islands (see Figure 5.10.A).

• Bidirectional ring topology: each island sends and receives individuals from only

other 2 islands, the previous one and the following one (see Figure 5.10.B).

• All-to-all topology: every island is fully connected to the rest of islands (see Figure

5.10.C).
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Figure 5.10: Topologies being analysed: A) Star Topology, B) Bidirectional Ring Topol-

ogy, C) All-to-all Topology

5.2.4.3 Migration & Replacement Policies

This section proposes different policies to define what individuals should be transferred

to the neighbouring islands and which ones should be replaced in the receiving popu-

lations. The combinations of policies are listed below:

• Best-fitted individuals for worst-fitted individuals (BFI-WFI): The best-fitted in-

dividuals from the source population replace the worst-fitted individuals from the

receiving population. We substitute individuals who are "further" in terms of

fitness value to the source ones.

• Best-fitted individuals for random individuals (BFI-RI): The best-fitted individ-

uals from the source population randomly replace individuals from the receiving

population.

• Best-fitted individuals for best-fitted individuals (BFI-BFI): The best-fitted indi-

viduals from the source population replace the best-fitted individuals from the

receiving population. We replace individuals who are "closer" in terms of fitness
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value to the source ones.

• Best-fitted individuals for most different individuals (BFI-MDI): The best-fitted

individuals from the source population replace the most different individuals (ac-

cording to the number of different genes) to them, existing in the receiving pop-

ulation.

• Best-fitted individual + "Annealing" for worst-fitted individuals (BFIA-WFI): We

select the best-fitted individual from the source population and a set of the fol-

lowing best-fitted individuals with probability η, proportional to the number of

generations spent (the more generations are executed, the higher the probabil-

ity is). This proposal is inspired by the simulated annealing approach, which

was first pioneered by Kirkpatrick (1983) [(101)]. This way, the probability of

not choosing the best-fitted individuals for migration is (1 − η) (in this case, we

randomly select another individual from the source population). Afterwards, the

best-fitted individual from the source population and the set of "annealing" indi-

viduals replace the worst-fitted individuals from the receiving population. Bear in

mind that we always select the best-fitted individual of the source population to

ensure a minimum of fast convergence as dynamic environments require prompt

responses while also preserving diversity. Finally, we substitute individuals who

are "further" in terms of fitness to the source ones.
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Chapter 6

Evaluation of the Application

This chapter evaluates our approach on the MSCC domain. Section 6.1 highlights the

magnitude, in terms of volume, of our application domain. Section 6.2 describes the

dataset employed. Section 6.3 points out the hardware descriptions of the SunFire sever

in which the evaluations have been performed. Section 6.4 analyses the selected metrics

for testing and comparing our approach. Section 6.5 examines the forecast module for

five different CGs as there are too many CGs to accomplish an exhaustive study for

all of them. Section 6.6 evaluates the search module by studying several time intervals

from days with different complexity; this section also compares our search module with

other acknowledged techniques. In Section 6.7, we will analyse our complete approach

(forecast module + search module) for one-day campaign. We will also compare how

our complete approach outperforms other conventional call centre’s algorithms.
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6.1 Magnitude of our Call Centre

This section presents some numbers in order to expose the magnitude of our CC. In

table 6.1, we can appreciate that our environment is quite complex and very dynamic.

Measure Value

Maximum number of CGs 1,035

Maximum number of simultaneous incoming calls 2,500

Maximum number of incoming calls per hour 60,000

Maximum number of incoming calls per day 700,000

Minimum number of simultaneous agents 0

Maximum number of simultaneous agents 2,100

Minimum number of agents concurrently assigned to a single group 0

Maximum number of agents concurrently assigned to a sole group 526

Mean number of agents concurrently assigned to a single group 3

Minimum number of potential profiles per agent 1

Maximum number of potential profiles per agent 108

Mean number of potential profiles per agent 16

Table 6.1: Figures that reflect the magnitude of our call centre.

Obviously, the number of incoming calls is not the same all the time as it depends

upon many factors. When agglomerating many data and considering a coarse-grain,

forecasting becomes much easier as the variability at high level (e.g. monthly and daily

level) is reduced and thus easy to forecast. However, our predictions rely on a fine-grain

process as forecasts refer to each successive state (remind that time-frames can range

from 60 to 3,000 seconds). We can perceive that fact in the following figures (Figures

from Figure 6.1 to Figure 7.5).
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Figure 6.1: Incoming calls during a year at monthly level.

Figure 6.2: Incoming calls during the most intricate month (September) at daily level.
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Figure 6.3: Incoming calls during the most complex day of September (September 9)

at hourly level.

Figure 6.4: Incoming calls during the most complex hour of “September 9” at minutely

level.

130



A pattern can be relatively easily found at macroscopic level (month of the year

and day of the month). However, predictions are harder when considering the hour of

the day and much harder at minute level (our concern in this work). Thus, these figures

corroborate how complex is to predict the incoming flow in our environment. However,

drop calls and available agents are easier to forecast because:

• the drop call rate is highly correlated with the volume of incoming calls as Figure

6.5 illustrates,

• and the number of available agents can be inferred from timetables and mean

processing times as well as current load and other well-known factors. Figure 6.6

shows the volume of existing agents by CG.

Figure 6.5: Incoming calls and abandonments (drop calls) during a common day.
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Figure 6.6: Number of agents for the 5 most representative CGs.
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6.2 Dataset Employed

A key thing is to create a suitable dataset, hunting for a fair balance between the

amount of data and a representative period of time measured in terms of days, carved

up in hours and minutes (microscopic level ⇒ fine grain). In our case, our forecasting

module will work with 122 numeric attributes (divided in 45 components, see Section

5.1) and thousands of registers, which correspond to 1 -minute interval information from

records stored during several months. The frequency of predictions depends upon the

size of the time-frame, determined by the adaptive time-frame mechanism. The search

module will work with the predicted output generated by the forecasting module in the

previous step, so that there will be as many inputs as time-frames.

In the dataset, the number of selected days must be a multiple of 7 because the

predictor week-day has imperative influence on the training and validation processes

as Section 5.1 demonstrates. Moreover, the number of days must be large enough to

represent every possible pattern (cases). Therefore, the number of days to take into

account should be, at least, 91 days in order to cover all possible patterns with the

aforesaid considerations. It is very important to divide data like this as this composition

allows for trend and seasonality detection.

Our problem presents 1,035 CGs; hence, the dataset is too large to do an exhaus-

tive study for all of them (obviously, the forecast module has been trained, considering

every CG). Consequently, 5 representative CGs with different behaviour in terms of os-

cillations, arrival rates, processing times and nature, have been carefully picked in order

to perform a generic enough approach (see Figure 6.7). These oscillations intuitively

imply a higher complexity. We have assigned an index to each CG that designates

their complexity level, which ranges from the most convoluted CG to the simplest one

(labelled from 1 to 5 ). For business reasons, we are not allowed to reveal real CGs

names but this is something we should not be concerned about in this work.
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Figure 6.7: Call arrival rate per day, grouped by CGs.

Afterwards, a different model has been exclusively developed for each CG because

of differences among CGs. Then, the whole dataset has been split into subsets, con-

templating every CG.

Once we have a single dataset for each CG, this is shuffled and then randomly

divided into three subsets, following the cross-validation structure [(104)] (see Figure

6.8): training (55%), generalisation (20%) and validation (25%).
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Figure 6.8: Dataset partitions: training, generalisation and validation.

The training dataset, which is the largest partition, is used for training our ANN.

Instead, the generalisation partition is used at the end of each epoch to observe whether

(or not) our ANN correctly handles unseen data. Once the training process has fin-

ished, the validation partition is showed to our ANN to determine its real precision and

accuracy.

Although we will analyse 5 CGs for the forecasting module in Section 6.5, we will

validate the search module, considering all the CGs as the fitness function needs all the

information. To evaluate the search module, we have chosen several time intervals from

days with different complexity (see Section 6.6). Therefore, we can discover the benefits

of our approach, depending on the dynamism of the system. Besides, we will analyse

our complete approach (forecasting module + search module) for one-day campaign in

Section 6.6.
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6.3 Hardware Description

This section describes the key hardware features of our SunFire 4,900 server in which

all experiments have been launched. These features are the following ones:

• 64 -bit Chip Multithreading UltraSPARC IV technology, with over 2x the through-

put of previous generations.

• Scales up to 8 x 1.35 -GHz UltraSPARC IV CPUs with 16 MB L2 cache per

processor.

• Up to 16 simultaneous compute threads with up to 64 GB memory.

• Solaris-TM 8, Solaris 9, and Solaris 10 Operating System.

• Robust capabilities in the Solaris 10 OS such as predictive self-healing to increase

reliability, Solaris containers for increased utilisation, and dTrace to optimise

application performance.

• 9.6 GB/second SunTM Fireplane interconnect.

• N+1 hot-swap power supplies/hot-pluggable disks.

• Sun systems controller for remote system administration.

• Automatic system recovery to maximise uptime.

• Integrated fibre channel disk subsystem, multi-pathing-ready, supporting up to

12 FC-AL disks.

• 9 PCI slots help ensure a highly scalable, well-balanced system.

• 17-RU tower/desk-side, rack mountable.
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6.4 Metrics

Metrics are usually specific for a given subject area and are often valid only within a

certain domain, so that these cannot be directly interpreted outside it. We have selected

several metrics to evaluate our forecasting and search modules as well as the complete

process.

6.4.1 Forecasting Metrics

In order to make the forecast process more understandable, we define the error, e, as

the difference between the real output value, f, and the predicted output, y. To evaluate

the forecasting techniques, we will apply the following metrics:

• Mean Absolute Error (MAE) - average of the absolute errors: MAE = 1
n

∑n
i=1 |fi − yi|

• Standard Deviation (SD) - the standard deviation of a statistical population is

the square root of its variance: σ =
√

1
n

∑n
i=1 (fi − yi)2

• Range statistics - minimum absolute error and maximum absolute error.

• Pearson’s correlation - which is defined as the covariance of the two variables

divided by the product of their standard deviations: Pearsonfi,yi = covariance(fi,yi)
σfi ·σyi

• Analysis of variance (ANOVA) - collection of statistical models, and their as-

sociated procedures, in which the observed variance in a particular variable is

partitioned into components attributable to different sources of variation.

6.4.2 Search Metrics

In order to compare all the search algorithms in terms of quality of the solution, a

metric to represent that quality is required. We presume that quality comparisons
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must be made over the same problem instances. Comparisons over different problem

instances are normally weaker as those instances may have dissimilar structures so that

the conclusions might be completely erroneous.

To evaluate the search module, we will examine the following metrics:

• Worst solution: Less fitted value, considering e executions (50 ).

• Best solution: Best fitted value, considering e executions (50 ).

• Mean solution: Mean value from e executions (50 ).

• Standard deviation: Standard deviation from e executions (50 ).

• Performance: Ratio of the current fitness value with respect to the best fitted

value. It can be calculated as follows: Performance = current_fitness_value(techniquei)
best_fitted_value

6.4.3 Call Centre Metrics

Most MSCCs employ more than 30 different metrics to verify how operations are going.

However, sometimes, just observing a subset of variables may accomplish our goals.

Metrics refer to customer satisfaction, quality, productivity, agent utilisation or costs

per contact (for outbound MSCC).

To evaluate the complete approach, we will consider the most important metric,

from our point of view, for any MSCC: the service level, which is defined as the per-

centage of customer calls that have to queue shorter than a specified amount of time

(in our MSCC, 20 seconds): Service_Level = answered_calls_in_less_than_20_seconds
total_number_of_incoming_calls

This metric covers aspects such as quality, productivity, client satisfaction among

others.
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6.5 Comparison of Forecasting Techniques

In order to evaluate the accuracy of our approach to the prediction of incoming calls,

as compared to the predictive techniques described above, a series of experiments has

been conducted on the MSCC domain.

The techniques to be analysed and then compared with our approach (uRprop)

have been selected from the survey of related work from Section 3.2.1: Single Expo-

nential Smoothing, Simple Time Series, Stationary Time Series, Damped Trend Time

Series, several ARIMA Models, Regression Models, Logistic Regression and Artificial

Neural Networks (7 different learning algorithms).

To perform the throughout comparison, we have used R’s forecast package [(147)]

and R’s RSNNS package [(150)] to evaluate those forecast techniques. Note that we

have selected those packages because they are reliable, well-implemented open-sources

so that we can analyse the inner of the implementations. Other data mining tools such

as SPSS Clementine or SAS Enterprise Miner have also truly powerful algorithms, but

we have not applied them to this comparison as we would not have any insights about

the implementation of the algorithms behind them.

In order to avoid extracting biased conclusions, we have executed the models 50

times and averaged the results. The models have been run under two of the cores of

our SunFire 4,900 server (one processor for the forecast module and another one for the

interfaces and data pre-processing).

Obviously, the number of incoming calls is not the same all the time since it

depends upon many factors (commercial campaigns, load peaks, daytime, etc.). When

agglomerating much data, forecasting becomes much easier as the variability of call

arrivals at high level (e.g. monthly and daily level) is reduced and more or less easy to

forecast (coarse-grain forecasting). However, our predictions rely on a fine-grain process

as forecasts refer to each successive time point over a rolling prediction window.
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Now, we present the results achieved during the experimental phase. Figure 6.9 il-

lustrates the cross-validation MAE comparison between Single Exponential Smoothing,

Simple Time Series, Stationary Time Series, Damped Trend Time Series, two ARIMA

models, Linear Regression, Logistic Regression and our uRprop ANN. This confirms

that, although each CG has a different behaviour, our ANN regularly behaves better

than other conventional predictive techniques (we do not claim a universally better

approach). Tables 7.2 - 7.6 better reflect the performance of each predictive technique

since Figure 6.9 shows CGs with very different MAE levels and the differences among

them may seem less important than what they actually are.

Figure 6.9: General forecasting comparison (cross-validation MAE is represented in

the Y-axis while the results obtained by each technique for each CG are given in the

X-axis). A lower MAE implies a better performance.

Tables 7.2 - 7.6 gather the results of the comparisons performed for each CG.

These tables contain the mean values from the 50 executions we have launched for each
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predictive technique with many thousands of occurrences (records from three months).

These tables also include further information such as minimum error, maximum error,

mean absolute error, standard deviation and Pearson correlation. Note that, although

differences in the results may sometimes seem small, those apparently small errors

(sometimes there are differences in the first or second decimal) are accumulated and

can entail annual losses of thousands Euros. The explanation is that there are 1,035

CGs, up to 700,000 incoming calls in a single day, so that small differences scale up

very fast.
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Method Min. Max. MAE SD Correlation

Error Error

uRprop -76 123 4.533 8.288 0.937

Single Exponential Smoothing -150 127 4.777 8.470 0.934

Simple Time Series -160 129 4.767 8.508 0.934

Stationary Time Series -161 129 4.767 8.508 0.934

Damped Trend Time Series -161 128 4.768 8.509 0.934

Arima (0.1.3)(0.0.0) -154 129 4.779 8.489 0.934

Arima (0.1.5)(1.0.1) -153 128 4.781 8.477 0.934

Backprop -123 128 4.606 8.221 0.938

BackpropMomentum -90 130 4.58 8.219 0.938

Rprop -105 127 4.619 8.165 0.939

Quickprop -99 128 4.639 8.254 0.938

BackpropChunk -90 132 4.579 8.213 0.938

RBF -68 159 4.832 10.698 0.892

BackpropWeightDecay -95 127 4.574 8.314 0.938

Logistic Regression -118 120 4.905 8.471 0.920

Linear Regression -127 119 4.956 8.499 0.918

Table 6.2: Results for Call Group 1: Method, minimum error, maximum error, mean

absolute error, standard deviation and Pearson correlation.
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Method Min. Max. MAE SD Correlation

Error Error

uRprop -32 36 3.244 5.360 0.968

Single Exponential Smoothing -40 39 3.356 5.507 0.967

Simple Time Series -36 39 3.405 5.567 0.966

Stationary Time Series -36 39 3.406 5.509 0.966

Damped Trend Time Series -40 39 3.356 5.507 0.967

Arima (0.1.3)(0.0.0) -36 39 3.402 5.564 0.966

Arima (0.1.5)(1.0.1) -37 39 3.397 5.554 0.966

Backprop -35 39 3.259 5.432 0.968

BackpropMomentum -37 37 3.257 5.344 0.968

Rprop -32 37 3.273 5.339 0.968

Quickprop -33 36 3.319 5.39 0.968

BackpropChunk -37 37 3.265 5.333 0.968

RBF -40 136 3.951 6.403 0.947

BackpropWeightDecay -34 37 3.255 5.385 0.968

Logistic Regression -32 39 3.853 5.958 0.961

Linear Regression -32 40 3.899 6.106 0.952

Table 6.3: Results for Call Group 2: Method, minimum error, maximum error, mean

absolute error, standard deviation and Pearson correlation.
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Method Min. Max. MAE SD Correlation

Error Error

uRprop -19 29 2.368 3.960 0.948

Single Exponential Smoothing -24 29 2.417 4.036 0.946

Simple Time Series -24 30 2.445 4.062 0.946

Stationary Time Series -24 30 2.445 4.063 0.945

Damped Trend Time Series -24 29 2.417 4.036 0.946

Arima (0.1.3)(0.0.0) -24 30 2.444 4.060 0.946

Arima (0.1.5)(1.0.1) -25 29 2.44 4.052 0.946

Backprop -20 29 2.436 4.002 0.947

BackpropMomentum -20 29 2.394 3.963 0.948

Rprop -21 28 2.403 3.948 0.948

Quickprop -19 28 2.457 4.038 0.946

BackpropChunk -22 28 2.419 2.985 0.947

RBF -24 45 3.17 6.538 0.851

BackpropWeightDecay -20 29 2.374 3.958 0.948

Logistic Regression -33 28 2.880 4.580 0.942

Linear Regression -32 28 2.962 4.624 0.943

Table 6.4: Results for Call Group 3: Method, minimum error, maximum error, mean

absolute error, standard deviation and Pearson correlation.
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Method Min. Max. MAE SD Correlation

Error Error

uRprop -20 20 1.728 3.129 0.948

Single Exponential Smoothing -22 21 1.732 3.183 0.947

Simple Time Series -22 21 1.75 3.208 0.946

Stationary Time Series -22 22 1.749 3.203 0.946

Damped Trend Time Series -22 21 1.732 3.183 0.947

Arima (0.1.3)(0.0.0) -22 21 1.748 3.203 0.946

Arima (0.1.5)(1.0.1) -22 21 1.744 3.198 0.946

Backprop -20 20 1.836 3.178 0.947

BackpropMomentum -20 19 1.766 3.122 0.948

Rprop -21 19 1.761 3.116 0.949

Quickprop -19 21 1.883 3.217 0.945

BackpropChunk -21 20 1.856 3.195 0.946

RBF -21 34 2.256 5.111 0.855

BackpropWeightDecay -21 20 1.778 3.132 0.948

Logistic Regression -21 29 1.993 3.239 0.930

Linear Regression -20 30 1.949 2.631 0.928

Table 6.5: Results for Call Group 4: Method, minimum error, maximum error, mean

absolute error, standard deviation and Pearson correlation.
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Method Min. Max. MAE SD Correlation

Error Error

uRprop -10 13 0.976 1.353 0.777

Single Exponential Smoothing -12 18 0.981 1.804 0.602

Simple Time Series -12 18 0.981 1.804 0.602

Stationary Time Series -12 18 0.981 1.803 0.603

Damped Trend Time Series -12 18 0.981 1.804 0.603

Arima (0.1.3)(0.0.0) -12 18 0.981 1.804 0.603

Arima (0.1.5)(1.0.1) -12 18 0.981 1.803 0.603

Backprop -5 17 0.948 1.694 0.617

BackpropMomentum -5 17 0.986 1.741 0.588

Rprop -5 18 0.778 1.762 0.574

Quickprop -4 18 1.079 1.802 0.548

BackpropChunk -5 17 0.967 1.726 0.598

RBF -5 18 1.002 1.773 0.567

BackpropWeightDecay -5 16 0.966 1.688 0.620

Logistic Regression -8 13 1.084 1.798 0.748

Linear Regression -8 13 1.1 1.823 0.745

Table 6.6: Results for Call Group 5: Method, minimum error, maximum error, mean

absolute error, standard deviation and Pearson correlation.

Looking at Tables 7.2 - 7.6, we perceive that uRprop (our approach) has less

variability in the predictions as the standard deviation is lower for every CG. However,

we observe that Time Series and ARIMA only obtain a slightly greater MAE for those

CGs with very few incoming calls (CG4 & CG5). When the volume of incoming calls

is reduced, Time Series are worth considering as they are very fast to train and detect
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trends very quickly.

While ARIMA and Time Series emphasise the "recent past", our ANN is more

flexible because it does not only consider previous tendencies and time points but also

covers historical patterns from other days and contextual information (e.g. if there is

a commercial campaign, the oscillations of the inbound traffic will be higher). The

capability of considering historical data is really valuable as we can discover trending

features like the peak hours’ effect and even more complex relationships. We can also

observe that regression models do not perform accurately as compared to time series

on this dynamic domain.

Another remarkable result is that Time Series and ARIMA models outperform

Regression Models in most CGs, probably, due to the capability of considering trends

and seasonality rather than simply considering relationships between the dependent

variable (output) and any one of the independent variables when these vary. The main

advantage of Regression Models is the clearness to understand and track the model

although it is hard to choose the variables to generate the model considering seasonality

and trend, which are crucial to better understand the behaviour of a CC.

Single Exponential Smoothing, Simple Time Series, Stationary Time Series and

Damped Trend Time Series require short computing times. Nevertheless, their per-

formance is limited because a single coefficient α is not enough to perfectly fit the

outcome. ARIMA models sometimes outperform the Time Series being studied but

ARIMA models require longer computing times.

On the one hand, the main problem with our approach is that we need longer train-

ing times than ARIMA, Time Series or Regression Models. Besides, our implementation

is much more complex than these techniques. When not having a multi-modal problem,

we recommend the use of simpler techniques: Linear Regression for linear dependencies

and Times Series for stable patterns or those that merely depend upon the recent past.

147



On the other hand, although there are no huge differences between our approach

and the rest of the above-mentioned techniques in terms of MAE for a given instant,

we strongly recommend our approach as far as slight differences in terms of MAE for a

given point may induce huge mean errors throughout a day (cascade effect).

We can also notice that the minimum and maximum errors are sometimes quite

big. Those errors occur at the beginning of the day when people start calling to the

call centre and the system becomes very active in very few seconds (e.g. at 9 p.m.).

Fortunately, the system gets more or less stable very quickly and those errors decrease

a lot.

Up until now, we have proved that our approach outperforms several forecasting

techniques but, can we beat other ANN’s learning algorithms? Our approach some-

times gets trapped in local minima so that we cannot claim that our approach can

behave better than other learning algorithms for ANNs as there are other nice exact

approximations. However, our environment is very dynamic and complex, and we have

1,035 CGs with very different behaviour. So, can we outperform other learning algo-

rithms given our requirements? Luckily, the answer is "yes". At least, we can offer more

accurate results for those CGs, which are more dynamic and have more incoming calls.

This makes sense because the search space is consequently more complex. Nonethe-

less, other learning algorithms might behave better for those CGs with fewer calls (e.g.

CG5). Obviously, this type of CGs is not really relevant due to the low volume of call

arrivals (it is less critical to have deviations).

Figure 6.10 demonstrates that our learning algorithm outperforms Backpropaga-

tion, Backprop with Momentum, Quickpropagation, Rprop with weights backtracking,

Backpropagation with weight decays, Backpropagation with chunkwise updating of the

weights and Radial Basis Function for the most convoluted CGs (CG1 and CG2). For

the easiest ones (CG4 and CG5), learning algorithms like Rprop with weights back-
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tracking slightly outperform our uRprop.

Figure 6.10: ANN Comparison. Cross-validation MAE is in the Y-axis and the results

obtained by each ANN learning algorithm for each CG are in the X-axis. A lower MAE

implies a better performance.

Finally, in order to compare the means of the samples, we will apply the ANOVA

test. When we have only two samples, we can use the t-test to compare the means of

the samples but it might become unreliable in case of more than two samples.

ANOVA compares several unmatched groups, based on the assumption that the

populations are Gaussian. The P value verifies whether the populations really have

the same mean. ANOVA is based on the assumption that all the populations have

the same variance. When the P value is small, we may conclude that the variances of

the populations are different in each experiment. As a consequence, the populations

are different. If the variances are truly different, then the populations are different

regardless of what ANOVA concludes about differences among the means.

Table 6.7 shows the results for the ANOVA test. According to the results gathered

149



in Table 6.7, we can state that the results and experiments are relevant as we see that the

chosen CGs and selected forecasting techniques are truly different and representative.

Anova Df Sum Sq Mean Sq F value Pr(>F)

ind 4 131.774 32.944 1100.8 < 2.2e-16

Residuals 75 2.245 0.030

Table 6.7: ANOVA test
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6.6 Experiments with the Search Module

This section provides an exhaustive analysis of the search module. In Subsection 6.6.1,

we present the experiments we have performed with the simple and parallel memetic

algorithm in order to determine the right configuration of the search module. In Sub-

section 6.6.2, we compare our simple and parallel approaches with other famous MHs.

6.6.1 Analysing the Search Module

6.6.1.1 The Simple Memetic Algorithm

The configuration of each island (a simple MA) has so much relevance in the global

performance of the parallel MA. For this reason, we now present 8 key operator con-

figurations in order to understand how a good (or bad) tuning can make an impact on

the final outcome. A given configuration can entail a faster or slower convergence and

a deeper or lighter exploitation of the search space, thereby finding a better or worse

optimum for a given elapsed time.

We have employed a dataset extracted from a normal day. Every configuration has

been run over the same problem instance 30 times and we have displayed the mean

fitness values.

The configurations that we have been working with are (see Figure 6.11):

• Configuration-1 employs a binary tournament selection and considers that chil-

dren will inherit the common points in their parents (potentially, the best genes)

and randomly receive the rest of genes from them. Then, it applies a perturbation

over each gene of the chromosome with a probability of 0.03. This perturbation

corresponds to changes of profiles in some agents (e.g. agent a2 who had assigned

the profile P1 has now associated the profile P3 due to a mutation). Finally, it

considers elitism with a probability of 0.93 to replace the worst individuals of
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the population for next generation. And, with a probability of 0.07, a worse

individual may be captured (steady-state scheme).

From this configuration, we perceive that Configuration-1 can process many gener-

ations compared to the rest of configurations (excluding Configuration-8). Configuration-

1 also obtains the best fitted solution. The convergence is favourable for a 5 -

minute execution (around generation-300). Note that most time-intervals have

that duration so that the improvement during a complete day is noticeable. After

that point the improvement is minor, albeit we can observe another important

slope around generation-500. When the dynamism is high, this configuration

is also very appealing because this configuration steeply slopes. Besides, when

the time-frame increases, the configuration is also appropriate as it still goes on

improving the fitness value.

• Configuration-2 differs from Configuration-1 in the mating-selection as it con-

siders mating by similarity. For this reason, the number of generations is re-

duced. This configuration allows for diversity but the convergence is slower than

Configuration-1. Instead, Configuration-2 almost always improves and may be

good for stable systems (longer time-frame).

• Configuration-3 applies a mating based on the differences on the fitness values.

Each individual is mated with its most different individual in terms of fitness:

highest difference in fitness value. We notice that this mating operator is faster

but the results seem to be worse than Configuration-2.

• Configuration-4 applies a random mating and a special selection in which the

best fitted individual is taken as well as its most different individual in terms of

genes (like similarity but for final selection). This configuration always increases

and has a nice slope, although the two first configurations seem to perform quite
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better.

• Configuration-5 imitates Configuration-4 except for the mating mechanism. In

this case, each individual is mated with its most different individual in terms of

fitness. It has a poorer performance and can carry out fewer generations.

• Configuration-6 employs a mating by highest fitness difference and applies a re-

placement policy in which the best fitted individual and the worst fitted individual

after reproduction fully replace the best and the worst individuals from the pop-

ulations respectively. The performance and slopes are poor.

• Configuration-7 proposes a similar scheme to Configuration-6 except for the ran-

dom mating. More generations are carried out and better performance than

Configuration-6.

• Configuration-8 applies a random mating and our crossover inspired in simulated

annealing. We also consider elitism for the replacement policy and mutations by

ranges. We also perceive a fine slope at the beginning. If we had more time, we

might increase the initial temperature value to explore more at the beginning.

Potentially, we could obtain better fitted individuals.

Figure 6.11 shows some of the most relevant configurations that we have tested out

during 600 seconds (10 minutes). X -axis represents the fitness value while the Y -axis

stands for the number of generations.
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Figure 6.11: Fitness obtained for 8 different configurations of evolutionary operators.

Y-axis is the fitness value while X-axis represents the iterations. A higher fitness value

implies a better performance.

Nevertheless, a manual batch of experiments may take too much time and might

guide the results towards a preconceived idea about the right setting-up. In order to

automate the experiments for the single MA, we have developed a meta-GA, using

historical data. Another option would be to develop a script to test out different

combinations but it would take too much time to perform the complete combinatorial.

For this reason, we believe that a meta-GA can be of valuable help in the decision

making process.

The chromosome of the meta-GA has 7 genes: mating operator, selection operator,

crossover scheme, replacement scheme, mutation severity, percentage of individuals to

apply LS and number of iterations to run LS. Figure 6.12 presents the evolution of the

meta-GA in terms of fitness value per generation.
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Figure 6.12: Fitness evolution of the meta-GA specifically designed for the tuning of

the islands.

The best configuration found is similar to Configuration-1. This configuration gets

the best fitness value for different time-frame sizes because it performs a nice exploration

at the beginning and an effective exploitation at the end. The exact configuration of

our single MA is the following one:

• Encoding: We encode every solution as an array of integers whose indexes rep-
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resent the available agents at a given instant and the array contents refer to the

profile assigned to each agent.

• Fitness function: We measure the service level resulting from the configuration

of agents and incoming calls (see Section 5.2).

• Population size: The population of each island contains 30 different individuals

encoded as hinted above.

• Initialisation: The initial population is randomly generated.

• Selection: Since the population must be bred each successive generation with new

individuals, we have chosen a binary tournament selection.

• Crossover : The offspring inherits the common points in their parents and ran-

domly receives the rest of genes from them.

• Mutation: We apply a perturbation over each gene of the chromosome with a

probability of 0.03.

• Replacement policy: We consider elitism with a probability of 0.93 to replace

the worst-fitted individuals of the population in next generation. And, with a

probability of 0.07, a worse-fitted individual may be captured. Note that our

basic GA relies on a steady-state scheme.

6.6.1.2 The Parallel Memetic Algortihm

We now detail and analyse the experiments conducted over two different problem in-

stances (medium and high difficulty, respectively) for the parallel MA. We follow the

same approach as for the simple MA. Firstly, we will show some configurations and

then reveal the results achieved by the meta-GA for parallel MAs.
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The two problem instances are composed by real data taken from our call centre

during two different days at the same hour: a one-day campaign and a normal day.

The size of each snapshot where each configuration has been executed is 600 seconds

(10 minutes). Note that around 800 incoming calls (n) simultaneously arrive during a

normal day in such a time interval, whereas up to 2,450 simultaneous incoming calls

may arrive during this interval during a commercial campaign. The number of agents

(m), for each time interval, oscillates between 700 and 2,100, having 16 different skills

for each agent on average, grouped in skill profiles of 7 skills on average. The total

number of the types of calls considered for this study is 167. When the workload (n/m)

is really high, finding the right assignment among agents and incoming calls becomes

fundamental.

Some parameters of the parallel MA’s configuration have been fixed (migration

frequency, amount of migrants, synchronism type, number of processing nodes and

same configuration in the isolated islands) while others have been varied (topology and

migration and replacement policies) in order to understand what policies perform best

in dynamic environments. Specifically, the following parameters of the parallel MA

have been "frozen":

• Migration frequency: Each 60 seconds, all the islands are blocked for selection,

migration and evaluation. If a generation is in process during the blockade in any

of the islands, we take the previous stable population and go on with the process

once the migrations have been carried out.

• Amount of migrants: Each island sends a set of migrants according to the migra-

tion policy, which represents the 10% of the size of the population (in practice, 3

individuals).

• Synchronism: We have applied a synchronous scheme in which every island waits
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for every incoming set of migrants they have to evaluate.

• Number of processing nodes: We consider 5 islands for every topology as this is

the number of available processors, which are fully utilised by the CPUs.

The topologies and the migration and replacement policies to experiment with were

fully described in Chapter 5. As for the islands, we have employed the configuration

given by the meta-GA in the previous section.

For a fair comparison, every configuration has been run over the same problem

instance 30 times. Table 6.8 shows the results obtained from the experimental phase

for the medium-difficulty problem instance while Table 6.9 illustrates the respective ones

for the high-difficulty problem instance. These tables show the best, worst and mean

solution (and its standard deviation) out of the 30 executions performed. Ranking refers

to the relative comparison between configurations, considering that the best setting-up

represents the highest performance.
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Policy Topology Min Max Mean SD Ranking

BFI-WFI Star 0.846698 0.847310 0.847092 0.0003 9

BFI-RI Star 0.846744 0.847361 0.847102 0.0003 8

BFI-BFI Star 0.846195 0.847068 0.846511 0.0004 12

BFI-MDI Star 0.847119 0.847742 0.847471 0.0003 5

BFIA-WFI Star 0.847119 0.847742 0.847489 0.0003 4

BFI-WFI Ring 0.847141 0.848006 0.847535 0.0004 3

BFI-RI Ring 0.846933 0.847908 0.847290 0.0004 7

BFI-BFI Ring 0.847119 0.847742 0.847364 0.0003 6

BFI-MDI Ring 0.853954 0.860611 0.858281 0.0031 2

BFIA-WFI Ring 0.857322 0.861109 0.859702 0.0017 1

BFI-WFI Hub 0.846149 0.847488 0.846856 0.0005 10

BFI-RI Hub 0.846654 0.847201 0.846848 0.0002 11

BFI-BFI Hub 0.834190 0.835465 0.834838 0.0005 14

BFI-MDI Hub 0.831358 0.831984 0.831603 0.0003 15

BFIA-WFI Hub 0.845520 0.846874 0.846378 0.0006 13

Table 6.8: Results of each parallel MA configuration for each island topology in 30

executions (medium difficulty problem instance). Values refer to the fitness values ob-

tained by each combination of migration & replacement policies. The caption of each

combination of policies is: Best-fitted individuals for worst-fitted individuals (BFI-

WFI ), Best-fitted individuals for random individuals (BFI-RI ), Best-fitted individuals

for best-fitted individuals (BFI-BFI ), Best-fitted individuals for most different individ-

uals (BFI-MDI ) and Best-fitted individual + "Annealing" for worst-fitted individuals

(BFIA-WFI ).

We perceive that the bidirectional ring seems to be the most appropriate topol-
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ogy for dynamic environments, most likely because this topology allows for opportune

convergence while preserving the required diversity. The star topology also entails

high-quality outcomes but quickly gets stagnated. The reason is that the master is-

land receives many migrants from the subordinate islands after some migrations (and

it is even worse when there are many subordinate islands), implying that populations

eventually become very similar. This intuitively involves a lack of diversity so that the

gain of fitness gets fatally damaged. This phenomenon affects much more strongly to

the hub topology as, being all the islands interconnected to each other, the diversity

diminishes too much after one or two migrations.

A second key conclusion is that the replacement of individuals is another impor-

tant feature to set-up. In this manner, replacing the worst-fitted individuals in the

receiving population by the best-fitted individuals of the source population does not al-

ways behave better than taking the most different individuals. The process of analysing

differences in the chromosomes in contrast implies that the parallel MA can run fewer

generations (as it is a costly operation) but entails better fitness values in the end.

The underlying principle may be that fitness-based comparisons can occasionally be

misleading or deceptive, leading to the situation in which two close individuals in terms

of genes in common may have associated very different fitness values, whereas two far

chromosomes in terms of genes in common may have assigned close fitness values (Whit-

ley, 1991) [(176)]. Another consequence of measuring gene differences as compared to

gauging fitness values is that the lift of the fitness curve has a smoother slope in the first

generations. Naturally, replacing the best-fitted individuals of the receiving population

by the best-fitted ones of the source population implies a slower convergence in each

processing node as we will find a larger percentage of less fitted individuals.
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Policy Topology Min Max Mean SD Ranking

BFI-WFI Star 0.793660 0.793941 0.793796 0.0001 8

BFI-RI Star 0.794102 0.794197 0.793561 0.0008 9

BFI-BFI Star 0.791377 0.792888 0.792280 0.0007 12

BFI-MDI Star 0.794265 0.794932 0.794693 0.0003 5

BFIA-WFI Star 0.794288 0.795012 0.794688 0.0003 6

BFI-WFI Ring 0.794610 0.795595 0.795223 0.0004 3

BFI-RI Ring 0.794677 0.795216 0.794978 0.0002 4

BFI-BFI Ring 0.794313 0.795221 0.794654 0.0004 7

BFI-MDI Ring 0.792158 0.798497 0.796137 0.0028 2

BFIA-WFI Ring 0.795679 0.798864 0.797696 0.0014 1

BFI-WFI Hub 0.792373 0.792873 0.792669 0.0002 11

BFI-RI Hub 0.791816 0.793589 0.792864 0.0008 10

BFI-BFI Hub 0.790809 0.791874 0.791324 0.0004 14

BFI-MDI Hub 0.790148 0.791492 0.790646 0.0006 15

BFIA-WFI Hub 0.791097 0.791840 0.791566 0.0003 13

Table 6.9: Same as Table 6.8 but results now refer to the highly-difficult problem

instance.

Let us now apply the Meta-GA for parallel MAs in order to automatically anal-

yse how these parameters may have an impact on the relationship between topologies

and problem structure.

Given the values for the 6 genes of the Meta-GA’s chromosome, there are 6,480

possible combinations (8 · 3 · 9 · 5 · 2 · 3 = 6, 480). This may seem an easy search space

but every evaluation takes time, as we have to re-execute the internal parallel MA each

time, which is unfeasible in a production environment that requires fast adaptations.
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Of course, we can optimise this by avoiding recalculations previously made by the

Meta-GA. The challenge should now be to develop a fast and effective Meta-GA that

avoids performing too many iterations to find the right configuration or, at least, a

good enough approximation (see the Meta-GA previously described).

In Figure 6.13, we can see that the best-fitted individual in the population of the

Meta-GA evolves very quickly. We can even find the optimal configuration around

generation-175. Best configuration found has been: 8 populations, bidirectional ring,

30 individuals per population, BFIA-WFI scheme, migrations each 60 seconds, 20% of

migrants.

Figure 6.13: Fitness value of the best-fitted individual in the population of the Meta-GA

generation-by-generation. We perceive that there is continuous evolution, especially at

the beginning, and the fitness value reaches appealing levels.

In Figure 6.14, we can observe that, in few iterations, we can find a set of good

candidates/individuals as the mean fitness of the population on each generation is quite
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high in less than 30 generations. This reflects that our Meta-GA does not only provide

a single good solution but also multiple high-quality candidate solutions.

Figure 6.14: We show, for each generation, the mean fitness value of the individuals that

compose the population of the Meta-GA. It reflects the mean quality of the individuals

as the algorithm evolves.

Our Meta-GA also clearly outperforms its panmictic version as Figure 6.15 demon-

strates. One of the main reasons of this good performance lies in the capability of

evolving the topology and the migration and replacement policies when needed. The

topology has an imperative impact on the migration and replacement policies since we

can perceive a variation on the migration policies when the topology evolves (e.g., in

generation-60).
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Figure 6.15: Fitness-based comparison between the panmictic algorithm and our Meta-

GA. This figure shows the uplift of our Meta-GA as compared to the panmictic version

of our parallel MA.

In Figure 6.16, we show the number of individuals having each topology in their

genes generation by generation. As there are 20 individuals in the population of our

Meta-GA, the sum-up of the three curves is always 20.
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Figure 6.16: Evolution of Topology in the Population Over Time. We can see the

number of individuals having each topology in their genes generation-by-generation.

As there are 20 individuals in the population of the Meta-GA, the sum-up of the three

curves is always 20.

Again, bidirectional ring outperforms other more connected topologies, especially

when the number of islands increases. When this happens, the population quickly con-

verges towards the same solution. Therefore, bidirectional ring seems to be the most

appropriate topology for dynamic environments, most likely because this topology al-

lows for opportune convergence while maintaining the desired diversity. It is important

to highlight that, for this problem, it is crucial to have a connected topology rather

than several isolated islands working in parallel (this problem requires a collaborative

scheme).

The star topology also entails high-quality outcomes but quickly suffers prema-

ture convergence. The reason is that the master island receives many migrants from
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the subordinate islands after some migrations (and it is even worse when there are

many subordinate islands), implying that populations eventually become very similar.

This intuitively entails a lack of diversity, so that the gain of fitness gets importantly

damaged. This phenomenon hits harder to the hub topology as, being all the islands

interconnected to each other, the diversity diminishes too much after one or two migra-

tions.

The two previous paragraphs confirm the results of the previous section, reflecting

that each problem structure needs a different island topology configuration. Dynamic,

complex problems should be supported by medium-connected topologies like the bidi-

rectional ring in order to make the parallel MA evolve properly.

In Figure 6.17, we show the number of individuals having each combination of

migration-replacement policies in their genes generation-by-generation. As there are

20 individuals in the population of our Meta-GA, the sum-up of the three curves is

consequently 20.
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Figure 6.17: Evolution of Migration-Replacement Policy in the Population Over Time.

We can see the number of individuals having each combination of migration-replacement

policies in their genes generation-by-generation. As there are 20 individuals in the

population of the Meta-GA, the sum-up of the three curves is consequently 20.

The migration and replacement of individuals is another important feature to set-

up. In this manner, replacing the worst-fitted individuals in the receiving population

by the best-fitted individuals of the source population does not always behave better

than taking the most different individuals. The process of analysing differences in the

chromosomes in contrast implies that the internal parallel MA can run fewer generations

(as it is a costly operation) but entails better fitness values in the end.

The fundamental principle may be that fitness-based comparisons can occasionally

be misleading or deceptive, leading to the situation in which two close individuals in

terms of genes in common may have associated very different fitness values, whereas two
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far chromosomes in terms of genes in common may have assigned close fitness values.

Another consequence of measuring gene differences as compared to gauging fitness

values is that the lift of the fitness curve has a smoother slope in the first generations.

Naturally, replacing the best-fitted individuals of the receiving population by the best-

fitted ones of the source population implies a slower convergence in each processing

node as we will find a larger percentage of less fitted individuals. This way, the best

migration policy has been sending the best fitted-individual with some non-necessarily

best-fitted individuals (annealing set) as it provides diversity.

Another finding has been that having too many individuals on each population

makes the algorithm slower and fewer generations are executed. Best values seem to

range from 15 to 30 individuals per population.

The migration frequency is also important in the performance. Migrations should

not be done with too much frequency, each population needs to evolve separately enough

time. Of course, the amount of migrants should not be too big as the internal parallel

MA may converge too fast to the same solutions. The impact is higher when the number

of islands is rather large.

We have seen that parallel MAs can deal with complex, real-world application

domains although they require specific tuning, depending on the nature of the problem

being faced. This way, we have presented a Meta-GA for fine-tuning parallel MAs based

on the island model.

6.6.2 Comparison of Metaheuristics

In a previous section, we have compared our forecasting module with other acknowl-

edged predictive techniques. We have seen that our approach is not universally the

best one as other learning algorithms outperform our uRprop when these have more

time to train the models (the ANN for each CG) or when the dynamism is low. For-
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tunately, our learning algorithm behaves better for those CGs with higher dynamism

when the time to train the models is reduced. But, we still have to determine the right

assignment among agents and tasks, given the predictions provided by the forecasting

module. This task is carried out by our search module, which will be compared with

other famous MHs.

Now, similarly to the previous section, we describe the (two) problem instances

(medium and high difficulty, respectively) that we have created from our dataset to

test out our search module. For a fair comparison, every MH will be run over the

same problem instances 50 times. These two problem instances are composed by real

data taken from our MSCC’s production environment during two different days at the

same hour (from 12:40 to 12:45, 300 seconds): a one-day campaign and a normal day.

The size of the time-frame to execute all the MHs has been 300 seconds (5 minutes)

because it is the commonest time-frame size. We have selected the interval [12:40-

12:45] as it is precisely the most critical hour of the day (highest load of the day:

n/m). Note that around 800 incoming calls (n) simultaneously arrive during a normal

day in such a time interval, whereas up to 2,450 simultaneous incoming calls may arrive

during this interval throughout a commercial campaign. The number of agents (m), for

each time interval, oscillates between 700 and 2,100, having 16 different skills for each

agent on average (minimum=1 and maximum=108 ), grouped in profiles of 7 skills on

average. The total number of CGs considered for this study is 167. Therefore, when the

workload (n/m) is really high, finding the right assignment among agents and incoming

calls becomes fundamental.

Table 7.7 summarises the results obtained by each MH in 50 executions, starting

from 50 different randomly generated initial solutions.

In our comparative study, we present dissimilar MHs, which cover diverse search

strategies. Theoretically, due to the local character of the basic LS, it is complicated
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to reach a high-quality solution because the algorithm usually gets trapped in a neigh-

bourhood when a local minimum is found. This occurs because the engine is always

looking for better solutions, which probably do not actually exist in the neighbourhood.

For this reason, sometimes, it is more appropriate to allow deterioration movements in

order to switch to other regions of the search space.

This is precisely the shrewd policy of SA whose temperature allows for many

oscillations (the probability of accepting a worse solution decreases according to the

time) at the beginning of the process and only few ones at the end (fewer chances

to select a worse solution as the algorithm is supposed to be refining the solution at

this point). Specifically, we have chosen Cauchy’s criterion because the convergence is

faster than Boltzmann’s and we only have 300 seconds to run the complete process.

In Cauchy’s scheme, the temperature is defined as T = T
(1+it) , where it is the iteration

number and the initial temperature is T = ( µ
−log(Φ)) ·f(S∗) where f(S*) is the cost of the

initial solution, Φ stands for the probability of accepting a “µ” worse solution than the

current one (Φ = µ = 0.3 ). Besides, this scheme avoids decreasing the distance between

two solutions when the process converges (jumps in the neighbourhood). Therefore,

the temperature must be high enough at the beginning to better explore the search

space (its neighbourhood) and low enough at the end to intensify the search as well

(exploitation of promising areas). The stopping condition must agree with the number

of neighbours generated. The maximum of neighbour solutions generated each time

is L(T)=30 and the probability of accepting a worse solution is exp(−δ
Tit

) given that

δ=f(Neighbour_Solution)-f(Current_Solution) and Tit is the temperature at iteration

it.

We perceive from Table 7.7 that SA behaves worse than the other MHs except

for the easiest instance of the problem. This may occur because we are not plenty of

time in our environment and the power of SA relies on a progressive cooling. If we
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cool off the temperature too fast, we are missing the effectiveness of accepting worse

solutions in some cases. Instead, if we cool off the temperature too slowly, we may

be accepting worse solutions systematically without converging. We have applied a

trade-off between exploration and exploitation but the computing time (300 seconds)

seems to be limited to apply SA to our environment (perhaps, things might change

when having more time).

Another option to increase the diversity in the solutions is to enlarge the en-

vironment, as VNS does. This philosophy consists in making a systematic change

upon the environment when the LS is used, increasing the environment when the pro-

cess gets stagnated. In the VNS, the search is not restricted to only one environ-

ment as in the basic LS; instead, the neighbourhood changes as the algorithm pro-

gresses. In our experiments, we have considered three different environments emax =

3 : (e1 → nh1 = 0.3 · n; e2 → nh2 = 0.5 · n; e3 → nh3 = n;). These steps are repeated

during 300 seconds (our stopping condition). Albeit we only consider three distinct

neighbourhoods, the improvement of the VNS compared to basic LS is noteworthy.

Consequently, the remarkable factor becomes the change in the number of neighbour-

hoods and their sizes as well as considering how the algorithm reacts in response. Table

7.7 also shows how VNS only slightly outperforms SA for the hardest instance of the

problem.

Another strategy is to start from different initial solutions as ILS accomplishes. ILS

generates a random initial solution and afterwards applies a basic LS. Subsequently, this

solution is systematically mutated and thus refined. For ILS, the complete process is

repeated during 300 seconds wherein the LS is the one proposed in Section 3.1.1 and

the perturbation affects to the 3% of agents. We can observe that ILS obtains solutions,

which vaguely improve those given by SA and VNS for the hardest problem instance,

although it performs worse for the simplest problem instance as Table 7.7 corroborates.
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Another way to find an accurate solution involves using methods based on popu-

lations, such as MAs. If the diversity of the solution is low, then the MA converges

to the closest neighbour. Nevertheless, when the selective pressure is high, individuals

may be alike or even identical. To speed-up convergence, MAs apply an LS procedure

upon a set of chromosomes (candidate solutions) that are refined every certain number

of generations. Incorporating a hybridisation mechanism to the GA is valuable as the

algorithm is improved in all respects (exploration and exploitation). The configuration

of the GA’s operators is the one provided previously whereas the LS mechanism is

given in Section 3.1.1. Table 7.7 points out how our MA does not only outperform all

the presented MHs for both problem instances but also remains more unwavering (less

differences among best, worst and mean fitness values).

Algorithm Best solution Worst solution Average Standard dev. Effectiveness

Medium Hard Medium Hard Medium Hard Medium Hard Medium Hard

MA 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001 100 100

ILS 0.768 0.728 0.755 0.722 0.763 0.725 0.002 0.003 95.85 96.15

VNS 0.790 0.727 0.766 0.723 0.775 0.724 0.005 0.001 97.36 96.02

SA 0.782 0.721 0.773 0.709 0.779 0.716 0.001 0.003 97.86 94.96

Table 6.10: Results obtained by the MHs in 50 executions starting from random initial

solutions for two problem instances: medium and hard (larger number of incoming calls

and high variability). Values refer to the fitness obtained by all the MHs.

It is important to remark that differences among techniques are not huge after

reaching a fitness of 0.8 since the complexity exponentially increases in our environment.

Therefore, minor improvements on the fitness value after that point are hard to obtain

but very valuable to accomplish a fair workforce distribution.

Hitherto, we have demonstrated that our (single) MA has been able to outperform

other MHs in our real-world production environment. However, we described our search
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module as a parallel MA based on an island model with the configuration given by the

Meta-GA. So, can this architecture obtain better results than the single MA? Certainly,

yes it can. Nevertheless, the improvement, which is remarkable, cannot be impressive

as the complexity increases asymptotically. Table 6.11 compares the results obtained

by the parallel MA with those obtained by the single MA. The parallel MA improves

the results of the single MA in a 4% for the hardest problem instance and 6.8% for the

easiest one. Although there is no a linear increment of fitness, the results are definitely

better.

Algorithm Best solution Worst solution Average Standard dev. Effectiveness

Medium Hard Medium Hard Medium Hard Medium Hard Medium Hard

PMA 0.834 0.818 0.823 0.783 0.829 0.809 0.003 0.002 100 100

MA 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001 96.01 93.20

Table 6.11: Results obtained by our Single and Parallel MAs in 50 executions starting

from random initial solutions for the two problem instances studied. Values refer to the

fitness.

Now, we will show the results of the Anova test for the MHs in Table 6.12. We see

that P is very small, so that we can conclude that the variances of the populations are

truly different in each experiment. In other words, we can state that the experiments

are valid and different to each other.

Anova Df Sum Sq Mean Sq F value Pr(>F)

ind 4 3.230 0.8075 13216 <2e-16

Residuals 235 0.014 0.0001

Table 6.12: ANOVA test
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6.7 Final Comparison

We have analysed the two main modules of our approach (forecasting module + search

module) for separate and seen that these outperform other famous CC techniques.

We will combine these modules and introduce the dynamic time-frame described

in Chapter 4. Specifically, we will compare our approach throughout a demanding

working day (there was a commercial campaign during the day). This way, we have

run the algorithm over a whole day with approximately 315,000 calls (up to 28,800

calls/hour and 2,450 simultaneous calls) under 12 double-core processors of a Sun Fire

E4,900 server (one for the interfaces, another one data pre-processing, another one for

the database, two processors for controlling, two processors for the forecasting module,

and the last five ones for the search module) with 96GB RAM. The mean number of

agents in each time-frame is 2,100, having 16 different skills for each agent on average

(minimum=1 and maximum=108 ). The total number of CGs is 1035. The mean

processing times differ a lot, depending on the CG (from seconds to minutes).

Now, we compare our approach with classical SBR [(64)], ED-SBR (an improve-

ment of classic SBR) and Koole’s algorithm [(22)]. Figure 7.6 illustrates the real service

level given by these techniques during a demanding working day. The graphs compile

the real service levels for each CG (not the fitness vale presented for the search module),

considering the relevance of each one (weighted CGs).

Since incoming traffic mainly arrives from 9 a.m. until 8 p.m.; therefore, we need

to put special focus on the results for this time-interval and, particularly, for the load

peaks that occur around 13 p.m. (see point 32 in Figure 7.6), 15 p.m. (see point 66

in Figure 7.6) and 19 p.m. (see point 100 in Figure 7.6) because, in these points, the

load is much higher.

Our approach clearly improves the results reached by other CC algorithms in these

critical points (load peaks). For the rest of points, we see that our algorithm usually

174



behaves better than the rest of techniques. Classic SBR and ED-SBR sometimes offer

a similar configuration of agents than our approach for some time points and, conse-

quently, the same service levels; but, on average, the service levels are clearly worse than

ours. Only in few points, the service level provided by ED-SBR and SBR is slightly

higher than ours (e.g. around 11:45, point 17 ). This happens because in these points,

our predictions had a greater error and SBR and ED-SBR consider the current state of

the system.

However, we can see that differences are tiny in these critical points and we present

more stable results over the time. This corroborates that an adaptive middle-term time-

frame is recommended as algorithms can reach nearly optimal solutions while short-

term algorithms often collapse in local optima. But, short-term algorithms present a

high adaptability to changes that long-term time-frame techniques cannot cope with.

These long-term based techniques generally extract patterns from historical records

and are only appropriate for stable environments. For this reason, our algorithm and

SBR outperform Koole’s approach, which is designed for more stable MSCCs. Koole’s

algorithm finds very accurate solutions when the dynamism is more reduced such as

classical staffing. Nevertheless, this is not the case of our environment and this kind of

techniques cannot be efficiently applied to our MSCC.
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Figure 6.18: Service level given by different techniques for a whole campaign day. X-axis

represents the time and Y-axis represents the real service level (not a fitness value).

Table 6.13 compares the results obtained by all techniques presented in Figure 7.6.

Table 6.13 presents the mean service level for each time point, its standard deviation and

the effectiveness, considering that our method represents the highest performance. Note

that we are actually comparing the behaviour of our approach with other conventional

CC techniques during a complete day rather than focusing on specific time-frames as

we have presented until now.

It is crucial obtaining accurate results for isolated time-frames, but we cannot

obviate that our global approach is being executed continuously, so that the transitions

among system states (for each time-frame) must be taken into account.
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Algorithm Real service level Standard deviation Effectiveness

Our Parallel Approach 0.987 0.016 100

Our Simple Approach 0.941 0.020 95.339

ED-SBR 0.901 0.043 91.286

SBR 0.860 0.056 87.132

KOOLE 0.733 0.029 74.265

Table 6.13: Comparison of our simple and parallel approach with other relevant (call

centre) algorithms over time.

The majority of the time-frames has a size of 300 seconds and, sometimes, 600

seconds. Only in certain peaks (around 9:00, 13:00, 15:00 and 19:00), the time-frame

has a minimum size of 60 seconds. From 23:55 to 8:35, the normal size of the time-frame

oscillates between 1,500 and 3,000 seconds.
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Chapter 7

Conclusions, Contributions and

Future work

The present chapter summarises the ideas exposed in this dissertation in Section 7.1

and highlights the major contributions of our work in Section 7.2. We also give some

guidelines for future work in Section 7.3.

7.1 Summary and Conclusions

We have presented a novel approach to the problem of workforce distribution in dy-

namic multi-agent systems based on blackboard architectures (common repository of

knowledge). We have seen that these systems are extremely complex and entail quick

adaptations to a changing environment that only high-speed greedy heuristics can han-

dle. These greedy heuristics consist in a permanent re-planning, considering the current

system state. Intuitively, these quickly taken decisions are not appropriate for middle

and/or long term planning due to the incessant erroneous movements.

However, we have demonstrated that the use of parallel memetic algorithms, which

179



are more versatile than classical heuristics, can guide us towards more accurate solu-

tions. With the intention of applying parallel memetic algorithms to such a dynamic

environment, we have put forward a reformulation of the traditional problem of work-

force distribution in dynamic multi-agent systems based on backboard architectures,

which coalesces predictions of future system states with a precise search mechanism, by

dynamically enlarging or diminishing the time-frame considered. We have claimed that

the size of the time-frame depends upon the dynamism of the system (smaller when

there is high dynamism and larger when there is low dynamism).

The present work has also illustrated how nearly optimal solutions each v seconds

(size of the time-frame) outperforms continuous bad distributions when the right size of

the time-frame is determined, and predictions and optimisations are correctly carried

out. Particularly, we have proposed a neural network with an upgraded resilient propa-

gation learning algorithm for predicting future system variables and a parallel memetic

algorithm based on an island scheme to perform the assignment of incoming tasks to

the right available agents.

Our approach has been tested out on a real-world production environment from

Telefónica, which is a large multinational telephone operator. We have shown that our

approach not only outperforms other conventional techniques for separate but also as

a unified technique. Therefore, we have obtained more accurate predictions than other

famous forecast techniques for various problem instances. Besides, our search module

based on a parallel memetic algorithm has outperformed other meta-heuristics under

different scenarios. Additionally, the combination of the two modules with the adaptive

middle-term time-frame has involved fine results. This corroborates that an adaptive

middle-term time-frame can be a very powerful approach when having the required

tools to implement it.
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7.2 Summary of Contributions

The contributions of this work can be devised from diverse perspectives although the

main contribution is the presentation of a novel approach to the workforce distribution

problem, which coalesces forecasting with optimisation by considering an adaptive time-

frame mechanism. We also apply this approach to a real-world production environment

(multi-skill call centre) from one of the largest telecommunications operators around

the world (Telefónica), outperforming other existing call-centre techniques.

Typically, traditional process management systems distribute tasks to queues from

which agents pull work, regularly without opting for the precise tasks they actually

desire to deal with. Instead, our approach enhances workforce distribution by addition-

ally injecting real-time knowledge of the task, individual skill sets, and availability and

utilisation of the workforce, allowing for dynamic and active distribution of tasks over

time.

Additionally, our method provides further clearness on customer service level agree-

ments (easier to fulfil service level requirements) and endows with insights into optimi-

sation, offering outstanding customer service.

Our approach also enables us to work at a lower level of granularity (fine-grain)

than short-term algorithms do (coarse-grain), because our search algorithm has more

time to find a solution than conventional techniques, thanks to the predictions of future

states. We can then work at agent’s profile level instead of predefined sets of agents

as other methods impose (other techniques cannot work at an individual agent level).

Other conventional techniques consider steady environments, which are far from the

soundness of a truly dynamic method.

Furthermore, other technical contributions of this thesis can be summarised as

follows:
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• This work proposes a scalable and parallelisable approach to a real-world NP-

hard problem, using different techniques from the field of artificial intelligence.

This approach lies in a new mechanism, which combines an accurate forecasting

module with a powerful, adaptive search module.

• We contribute to the state-of-the-art with a sophisticated and robust method that

is self-adapted to the changes of the system over time (time series for determining

the dynamism of the system and a Markov model for performing the system

transitions).

• We present an upgraded version of the resilient back-propagation learning algo-

rithm, specially adapted to highly-dynamic environments like the multi-skill call

centre.

• Novel migration and replacement policies for parallel genetic algorithms are pro-

posed in order to preserve a fair balance between exploration and exploitation in

the search process. These operators are inspired in other meta-heuristics schemes

like simulated annealing and tabu search.

• A novel meta-genetic algorithm for the configuration of parallel evolutionary al-

gorithms is also presented in this work.

• We also propose a method for evaluating partial fitness functions in order to

speed-up the evaluations of candidate solutions.

• Three exhaustive comparisons among different classical forecasting techniques,

various classical heuristics for dynamic multi-agent systems and other meta-

heuristics applicable to dynamic multi-agent systems are provided from multiple

points of view.
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Finally, the contributions to the scientific literature have produced 12 peer-reviewed

publications that are fully described in the Appendix A of this manuscript:

1. Publications in international journals:

(a) Millán-Ruiz, D. and Hidalgo, J.I.: Forecasting Call-Centre Arrivals. Journal

of Forecasting, Wiley, Ed. Derek W. Bunn, 2013.

(b) Arnaldo, I., Contreras, I.; Millán-Ruiz, D., Hidalgo, J.I. and Krasnogor,

N.: Matching Island Topologies to Problem Structure in Parallel Evolution-

ary Algorithms. Soft Computing. A Fusion of Foundations, Methodologies

and Applications. Special Issue on Bio-Inspired Algorithms with Structured

Populations, Springer, 2013.

2. Publications in relevant international conferences:

(a) Millán Ruiz, D. and Hidalgo, J.I.: Migration and Replacement Policies

for Preserving Diversity in Dynamic Environments. Proceedings of the

12th European Conference on the Applications of Evolutionary Computation

(EvoApplications 2012, Málaga, Spain, April 11-13, 2012.

(b) Millán Ruiz, D., Hidalgo, J.I.: Comparison of Metaheuristics for Work-

force Distribution in Multi-Skill Call Centres. Proceedings of the Interna-

tional Joint Conference on Computational Intelligence (ICEC 2010), Valen-

cia, Spain, October 24-26, 2010.

(c) Millán Ruiz, D., Hidalgo, J.I.: A Parallel Memetic Algorithm for Dynamic

Workload Distribution in Multi-Agents Systems. Proceedings of the 3rd

Workshop on Parallel Architectures and Bioinspired Algorithms held In con-

junction with PACT 2010, Vienna, Austria, September 11-15, 2010.
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(d) Millán Ruiz, D., Pacheco, J., Hidalgo, J.I., Vélez, JL: Forecasting in a multi-

skill Call Centre. Proceedings of the 10th International Conference on Ar-

tificial Intelligence and Soft Computing (ICAISC 2010), Zakopane, Poland,

June 13-17, 2010.

(e) Millán Ruiz, D., Hidalgo, J.I.: A Memetic Algorithm for Workforce Distribu-

tion in Dynamic Multi-Skill Call Centres. Proceedings of the 10th European

Conference on Evolutionary Computation in Combinatorial Optimisation

(EVOCOP 2010), p. 178-189, Istanbul, Turkey, April 7-9, 2010.

(f) Meléndez, J., Lopez, B., Millán-Ruiz, D.: Probabilistic models to assist

maintenance of multiple instruments. Proceedings of the 14th IEEE In-

ternational Conference on Emerging Technologies and Factory Automation

(ETFA 2009), p. 1499-1503, Palma de Mallorca, Spain, September 22-26,

2009.

(g) Pacheco, J., Millán-Ruiz, D., Vélez, JL: Neural Networks for Forecasting in

a multi-skill Call Centre. Proceedings of the 11th International Conference

on Engineering Applications of Neural Networks (EANN 2009), p. 291-300,

London, UK, August 27-29, 2009.

(h) Martinez-Lopez, R., Millán-Ruiz, D., Martin-Dominguez, A.; Toro-Escudero,

MA: An Architecture for Next-Generation of Telecare Systems Using On-

tologies, Rules Engines and Data Mining. Proceedings of the International

Conferences on Computational Intelligence for Modelling, Control and Au-

tomation, Intelligent Agents, Web Technologies and Internet Commerce, and

Innovation in Software Engineering (CIMCA 2008), p. 31-36, Vienna, Aus-

tria, December 10-12, 2008.

3. Publications in national conferences:
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(a) Millán Ruiz, D., Hidalgo, J.I.: Algoritmo memético paralelo para la distribu-

ción de esfuerzo en centros de llamadas dinámicos multiagente y multitarea.

Proceedings of the 7th Spanish Conference on Meta-heuristics, Evolution-

ary Algorithms and Bioinspired Algorithms (MAEB 2010), Valencia, Spain,

September, September 8-10, 2010.

(b) Arnaldo, I., Contreras, I.; Millán-Ruiz, D., Nobel, J; Hidalgo, J.I. and

Krasnogor, N.: Relación entre la Estructura de un Problema y la Topología de

Islas en Algoritmos Evolutivos Paralelos. To appear in MAEB 2013 (CEDI

2013), September 17-20, Madrid.
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7.3 Areas of Future Research

To conclude, we propose some guidelines for future work. We recommend analysing

more datasets and more problem instances because we may obtain different conclusions

with regard to the configuration of our complete approach. So, if the arriving load is

easy to predict we might consider simpler forecast techniques.

Another possible improvement would entail the analysis of more complex feature

selection techniques. We have employed PCA, which detects linear combination of

features in order to reduce the number of inputs but there are non-linear approximations

like the wrapper subset evaluation.

A deeper study of constraint handling should be done as our proposal is dependent

on our specific domain (e.g. we may have different ranges for the levels of constraints).

For the dynamism levels, we can also have a continuous approximation (without

levels) for those dynamic multi-agent systems where agents are not humans so that we

do not need to care about the agents’ rights (we can potentially change their profiles

at any time without regulation constraints).

Additionally, we suggest that an analogous study for the search module compari-

son should be done, considering multi-objective evolutionary approximations (such as

SPEA-II and NSGA-II), given our problem formulation.
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Appendix A

Detailed Contribution to the Scientific Literature

I would be remiss if I did not give the proper credit to my co-authors, to whom I

am greatly indebted for their collaboration on these works which contributed to my

thesis work. To perfectly distinguish my personal contribution, the details of these

publications are given below:

1. Publications in international journals:

(a) Publication:

i. Details: Millán-Ruiz, D. and Hidalgo, J.I.: Forecasting Call-Centre Ar-

rivals. Journal of Forecasting, Wiley, Ed. Derek W. Bunn, 2013.

ii. Status: In press. Accepted on October 20th, 2012.

iii. JCR Impact Factor : 0.930.

iv. Summary: This article presents a novel neural network-based approach

to the intra-day forecasting of call arrivals in call centres. We apply the

method to individual time series of arrivals for different customer call

groups. To train the model, we use historical call data from 3 months

and, for each day, we aggregate the call volume in 288 intervals of 5

minutes. With this data, our method can be used for predicting the call
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volume in next 5-minute interval using either previous real data or pre-

vious predictions to iteratively produce multi-step ahead forecasts. We

compare our approach with other conventional forecasting techniques.

Experimental results have proven factual evidence in favour of our ap-

proach.

v. Personal contribution: My contribution was to design a novel learning

algorithm for neural networks. Specifically, I designed a self-adaptive al-

gorithm (inspired by the famous "resilient back-propagation") to analyse

complex search spaces much faster than other alternatives and usually

delivering better results. This algorithm was compared, 30 times, to

other 15 forecasting techniques for 5 different problem instances. Note

that this algorithm is the core of the predictive module proposed in this

dissertation. Section 4.4 presents all these ideas, whereas Section 6.5

shows the comparison in detail.

(b) Publication:

i. Details: Arnaldo, I., Contreras, I.; Millán-Ruiz, D., Hidalgo, J.I. and

Krasnogor, N.: Matching Island Topologies to Problem Structure in Par-

allel Evolutionary Algorithms. International Journal of Soft Computing:

Special Issue on Bio-Inspired Algorithms with Structured Populations,

Springer, 2013.

ii. Status: In press. Accepted on November 16th, 2012.

iii. JCR Impact Factor : 1.880.

iv. Summary: In the context of Parallel Evolutionary Algorithms, it has

been shown that different population structures induce different search

performances. Nevertheless, no work has shown clear cut evidence that

there is a correlation between the solver’s population structure and the
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problem’s network structure. In this work, we verify this correlation

performing a clear and systematic analysis of a large set of popula-

tion structures (based on the well known β-graphs) and NK-Landscape

problems. Furthermore, we go beyond our findings in these idealised

experiments by analysing the performance of variable-topology EAs on

a dynamic real-world problem, the multi-skill call centre.

v. Personal contribution: My contribution to this article was focused on the

real-world problem: the multi-skill call centre. In order to study the rela-

tionship between the problem structure and the best configuration for a

parallel evolutionary algorithm, I proposed a self-adaptive meta-genetic

algorithm. Afterwards, I carried out a detailed analysis of the results

for multiple configurations, linking these results with those obtained for

the two theoretical problems, thereby drawing general conclusions from

the relationship between the problem structure and the configuration

of the islands within a parallel evolutionary algorithm. This algorithm

composes the basis of the optimisation module described in this thesis

in Section 4.5.

2. Publications in relevant international conferences:

(a) Publication:

i. Details: Millán Ruiz, D. and Hidalgo, J.I.: Migration and Replacement

Policies for Preserving Diversity in Dynamic Environments. Proceed-

ings of the 12th European Conference on the Applications of Evolution-

ary Computation (EvoApplications 2012, Málaga, Spain, April 11-13,

2012.

ii. Status: Published in 2012.
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iii. Summary: This paper seeks to resolve the difficulties arising from the

configuration and fine-tuning of a Parallel Genetic Algorithm (PGA)

based on the Island Model, when the application domain is highly dy-

namic. This way, the reader will find a number of useful guidelines for

setting up a PGA in a real, representative dynamic environment. To

achieve this purpose, we examine different (existing and new) migra-

tion and replacement policies for three different topologies. Of course,

there are many other factors that affect the performance of a PGA such

as the topology, migrant selection, migration frequency, amount of mi-

grants, replacement policy, number of processing nodes, synchronism

type, configuration in the isolated islands, diversity of policies in dif-

ferent islands, etc., which are also considered as a part of this study.

The pivotal point of all the experiments conducted is the preservation of

diversity by means of an appropriate balance between exploration and

exploitation in the PGA’s search process when the application domain

is highly dynamic and strong time constraints arise. The experimen-

tal phase is performed over two problem instances from a real-world

dynamic environment which is the multi-skill call centre.

iv. Personal contribution: In addition to the study of diversity maintenance

for parallel evolutionary algorithms, I proposed a series of innovative

migration and replacement policies, including ideas from other famous

meta-heuristics into classic evolutionary operators. These policies and

ideas are fully employed in the parallel memetic algorithm (optimisation

module) of this thesis (see Section 4.5 and Section 6.6.1).

(b) Publication:

i. Details: Millán Ruiz, D., Hidalgo, J.I.: Comparison of Metaheuristics
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for Workforce Distribution in Multi-Skill Call Centres. Proceedings of

the International Joint Conference on Computational Intelligence (ICEC

2010), Valencia, Spain, October 24-26, 2010.

ii. Status: Published in 2010.

iii. Summary: Call centre technology requires the assignment of a large

volume of incoming calls to agents with the required skills to process

them. In order to determine the right assignment among incoming calls

and agents for a real production environment, a comparative study of

meta-heuristics has been carried out. The aim of this study is to im-

plement and empirically compare various representative meta-heuristics,

which represent distinct search strategies to reach accurate, feasible so-

lutions, for two different instances of the workforce distribution problem.

This study points out how memetic algorithms can outperform other ac-

knowledged meta-heuristics for two different problem instances from a

real multi-skill call centre from one of the world’s largest telecommuni-

cations companies.

iv. Personal contribution: My contribution was to implement and compare

different meta-heuristics with the memetic algorithm that I developed for

a previous publication. This comparison is fully included in this thesis in

order to demonstrate that our memetic algorithm can outperform other

meta-heuristics to solve our problem (see Section 6.6.2).

(c) Publication:

i. Details: Millán Ruiz, D., Hidalgo, J.I.: A Parallel Memetic Algorithm

for Dynamic Workload Distribution in Multi-Agents Systems. Proceed-

ings of the 3rd Workshop on Parallel Architectures and Bioinspired Algo-

rithms held In conjunction with PACT 2010, Vienna, Austria, Septem-
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ber 11-15, 2010.

ii. Status: Published in 2010.

iii. Summary: This paper describes a parallel evolutionary approach to the

problem of workload distribution in dynamic multi-agent systems based

on blackboard architectures. Specifically, we focus on the multi-skill call

centre use case. This type of call centres entails quick adaptations to

a changing environment that only some greedy algorithms have been

able to cope with. These greedy heuristics consist of a continuous re-

planning, considering the current state of the system. As these decisions

are greedily taken, the workload distribution may be poor for middle

and/or long term planning due to incessant wrong movements. The use

of parallel memetic algorithms, which are much more complex than clas-

sical, ad-hoc heuristics, can guide us towards more accurate and robust

solutions. Now, the difficulty underlies in how to apply these techniques

to uncertain, ever-changing environments. Specifically, in previous stud-

ies, we proposed a neural network to make accurate predictions and a

single memetic algorithm as a heuristic optimisation mechanism, im-

proving the results obtained by other well-known techniques of the call

centre domain. In this study, we upgrade our approach by parallelising

the memetic algorithm and carrying out a deeper analysis.

iv. Personal contribution: In this paper, I proposed a complete method for

workforce distribution in multi-agent systems, which covered the ideas

of previous publications (predictive module + optimisation module), ex-

plaining how to combine those components. Apart from linking previous

components, I put forward an initial mechanism for the adaptive time-

frame (a new feature) and a parallel version for the optimisation module
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(up until now, the memetic algorithm was sequential). The whole system

is the basis of Chapter 4 of this thesis.

(d) Publication:

i. Details: Millán Ruiz, D., Pacheco, J., Hidalgo, J.I., Vélez, JL: Fore-

casting in a multi-skill Call Centre. Proceedings of the 10th Interna-

tional Conference on Artificial Intelligence and Soft Computing (ICAISC

2010), Zakopane, Poland, June 13-17, 2010.

ii. Status: Published in 2010.

iii. Summary: Call centre technology is subject to multiple improvements

and innovations. Some of them try to improve agent performance and

client satisfaction. There are two different but intrinsically linked prob-

lems. The first one is related to predictions of call arrivals, call abandon-

ment, available agents having a certain skill, call pick-up and average

delay time; and the second one deals with workload distribution within

a multi-skill Call Centre. In this paper, we focus on forecasting call

arrivals, which can be approached from several angles. Concretely, we

analyse and compare neural networks, time series and regression models

in this study.

iv. Personal contribution: I conducted a comprehensive study of the state-

of-the-art on call arrival forecasting techniques (neural networks, time

series and regression models). This study has subsequently been ex-

tended and then included in this thesis (see Section 6.5).

(e) Publication:

i. Details: Millán Ruiz, D., Hidalgo, J.I.: A Memetic Algorithm for Work-

force Distribution in Dynamic Multi-Skill Call Centres. Proceedings of
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the 10th European Conference on Evolutionary Computation in Com-

binatorial Optimisation (EVOCOP 2010), p. 178-189, Istanbul, Turkey,

April 7-9, 2010.

ii. Status: Published in 2010.

iii. Summary: In this paper, we describe a novel approach for workforce

distribution in dynamic multi-skill call centres. Dynamic multi-skill call

centres require quick adaptations to a changing environment that only

fast greedy heuristics can handle. The use of memetic algorithms, which

are more complex than ad-hoc heuristics, can guide us to more accurate

solutions. In order to apply memetic algorithms to such a dynamic

environment, we propose a reformulation of the traditional problem,

which combines predictions of future situations with a precise search

mechanism, by enlarging the time-frame considered. Concretely, we

propose a neural network for predicting call arrivals and the number of

available agents, and a memetic algorithm to carry out the assignment

of incoming calls to agents, which outperforms classical approaches to

this dynamic environment. We also test our method on a real-world

environment within a large multinational telephone operator.

iv. Personal contribution: For this article, I developed the first version of

the optimisation module, consisting of a simple memetic algorithm. I

also implemented (or adapted) other conventional call-centre techniques

(e.g. skill-based routing, Thomson’s algorithm and Koole’s method) to

perform the comparison. Although the results presented in this paper

outperformed other call-centre techniques, I improved many aspects of

the algorithm (see recent publications). All these changes are fully de-

scribed in Section 4.4 and Section 6.7 of this dissertation.
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(f) Publication:

i. Details: Meléndez, J., Lopez, B., Millán-Ruiz, D.: Probabilistic models

to assist maintenance of multiple instruments. Proceedings of the 14th

IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA 2009), p. 1499-1503, Palma de Mallorca, Spain,

September 22-26, 2009.

ii. Status: Published in 2009.

iii. Summary: The paper discusses maintenance challenges of organisations

with a huge number of devices and proposes the use of probabilistic

models to assist monitoring and maintenance planning. The proposal

assumes connectivity of instruments to report relevant features for mon-

itoring. Also, the existence of enough historical registers with diagnosed

breakdowns is required to make probabilistic models reliable and useful

for predictive maintenance strategies based on them. Regular Markov

models based on estimated failure and repair rates are proposed to calcu-

late the availability of the instruments and Dynamic Bayesian Networks

are proposed to model cause-effect relationships to trigger predictive

maintenance services based on the influence between observed features

and previously documented diagnostics.

iv. Personal contribution: My main contribution was the creation of proba-

bilistic models for predictive maintenance. Although these probabilistic

methods have not been fully applied to this dissertation, the method

for determining the dynamism of the system (size of the prediction win-

dow and the transitions between system states) is based on the regular

Markov models proposed in this paper. Therefore, those ideas are im-

portant inputs for the Chapter 4 of this thesis.

217



(g) Publication:

i. Details: Pacheco, J., Millán-Ruiz, D., Vélez, JL: Neural Networks for

Forecasting in a multi-skill Call Centre. Proceedings of the 11th In-

ternational Conference on Engineering Applications of Neural Networks

(EANN 2009), p. 291-300, London, UK, August 27-29, 2009.

ii. Status: Published in 2009.

iii. Summary: Call centre technology requires the assignment of a large

volume of incoming calls to agents with the required skills to process

them. In order to perform the right assignment of call types to agents

in a production environment, an efficient prediction of call arrivals is

needed. In this paper, we introduce a prediction approach to incom-

ing phone calls forecasting in a multi-skill call centre by modelling and

learning the problem with an improved back-propagation Neural Net-

work which have been compared with other methods. This model has

been trained and analysed by using a real-time data flow in a production

system from our call centre, and the results obtained outperform other

forecasting methods. The reader can learn which forecasting method

to use in a real-world application and some guidelines to better adapt

an improved back-propagation neural network to his needs. A compari-

son among techniques and some statistics are shown to corroborate our

results.

iv. Personal contribution: In this article, I developed a neural network

learning algorithm, specifically adapted to highly changing environments.

I also performed a batch of experiments that included a short list of pre-

dictive techniques. Although this neural network is not the final version

that is included in this thesis (but the version described in the previ-
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ously mentioned journal article), it was used as the starting point for

this work and still shares some common aspects and parameters with

the newest version (see Section 4.4).

(h) Publication:

i. Details: Martinez-Lopez, R., Millán-Ruiz, D., Martin-Dominguez, A.;

Toro-Escudero, MA: An Architecture for Next-Generation of Telecare

Systems Using Ontologies, Rules Engines and Data Mining. Proceed-

ings of the International Conferences on Computational Intelligence for

Modelling, Control and Automation, Intelligent Agents, Web Technolo-

gies and Internet Commerce, and Innovation in Software Engineering

(CIMCA 2008), p. 31-36, Vienna, Austria, December 10-12, 2008.

ii. Status: Published in 2008.

iii. Summary: The nonstop ageing of population in Europe makes the health

system maintenance a worrying and complicated task for every govern-

ment. In this context, telecare systems emerge as a cheap and effective

approach. A telecare system helps elderly and care-dependent people to

satisfy their needs and special requirements, requiring fewer resources

and enabling users to be at their own homes. The purpose of this paper

is to define a telecare Conceptual System Architecture based on ontolo-

gies, rules and inference engines, machine learning techniques and data

mining procedures. Some open sources are also proposed in order to

develop certain modules of this architecture. The approach tries to pro-

vide a representation of an entire telecare system, offering customised

solutions for users, professional care facilities and service centres.

iv. Personal contribution: My main contribution focused on the data mining

and machine learning pieces. Specifically, I designed a generic-purpose
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neural network that allowed for predicting the nervousness level of the

patients, according to their behaviour. Although the learning algorithm

was a simple back-propagation, the structure of the neural network was

then adapted to the call centre environment in other publications.

3. Publications in national journals and conference:

(a) Publication:

i. Details: Millán Ruiz, D., Hidalgo, J.I.: Algoritmo memético paralelo

para la distribución de esfuerzo en centros de llamadas dinámicos multi-

agente y multi-tarea. Proceedings of the 7th Spanish Conference on

Meta-heuristics, Evolutionary Algorithms and Bioinspired Algorithms

(MAEB 2010), Valencia, Spain, September, September 8-10, 2010.

ii. Status: Published in 2010.

iii. Summary: In this paper, we describe a parallel approach to the problem

of workforce distribution in multi-skill call centres. This type of call

centres requires adaptive techniques, because they are changing envi-

ronments. In previous studies, we proposed a new neural network for

making predictions and a sequential memetic algorithm for assigning

tasks to agents. In this study, we present an extension of the memetic

algorithm (by means of an island model). Experimental results show

those improvements.

iv. Personal contribution: In this article, my contribution was focused on

showing the advantages of a parallel evolutionary approach as compared

to a sequential evolutionary algorithm. These ideas were extended in

a subsequent publication where I performed a deeper analysis. These

results are also reflected in this thesis in Chapter 6.
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Appendix B

Resumen Extendido en Español

Esta tesis describe un novedoso enfoque para resolver el problema de distribución

de carga de trabajo en sistemas multi-agente dinámicos basados en arquitecturas de

pizarra, enfocándose especialmente en un escenario real: el call center multi-tarea.

Para abordar este tipo de entornos dinámicos, tradicionalmente se han aplicado

diversas heurísticas voraces que permiten dar una solución en tiempo real. Básicamente,

dichas heurísticas realizan replanificaciones continuamente, considerando el estado del

sistema en cada momento. Como las decisiones se toman de forma voraz sin hacer una

planificación óptima, la distribución de la carga de trabajo puede ser pobre a medio

y/o largo plazo.

El uso de algoritmos meméticos paralelos nos puede permitir encontrar soluciones

mucho más precisas. Para aplicar este tipo de algoritmos, introducimos el concepto de

ventana temporal adaptativa.

De esta forma, el tamaño de la ventana temporal depende del nivel de dinamismo

del sistema en un instante dado. Este trabajo propone una serie de herramientas para

determinar el dinamismo del sistema de forma automática, así como un novedoso mó-

dulo de predicción basado en una red neuronal y un potente método de búsqueda basado

en meta-algoritmos meméticos paralelos para poder lidiar con entornos dinámicos com-
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plejos. Para concluir, comparamos nuestro enfoque con otras técnicas del estado del

arte en un entorno de producción real (Telefónica) obteniendo mejores resultados que

el resto de técnicas actuales. También se proporciona un estudio exhaustivo de cada

uno de los módulos.
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Introducción

A lo largo de los últimos años, se puede percibir una tendencia orientada a resolver

problemas de complejidad creciente, así como a trabajar en dominios de aplicación que,

frecuentemente, involucran el cómputo de flujos de datos continuos y notablemente

dinámicos. Estos arduos entornos son, habitualmente, difíciles de mantener por técnicas

más convencionales.

Un problema clásico, inherentemente enmarcado dentro de este ámbito, es el es-

tudio de distribución de esfuerzo en sistemas multi-agente dinámicos, como

puede ser un centro de llamadas multi-agente y multi-tarea.

La variante básica del problema abordado puede formularse como una asignación

dinámica de tareas a los agentes que tienen la capacidad de llevarlas a cabo a medida que

transcurre el tiempo, respetando una serie de restricciones que pueden ser temporales,

organizativas, legales o de cualquier otra índole.

Dicho esto, el estado del arte distingue una amplia gama de variantes de este prob-

lema aunque, dependiendo del dinamismo del sistema, podemos identificar dos grandes

vertientes o escenarios: entornos dinámicos o entornos con una cierta estabilidad.

Por un lado, encontramos entornos dinámicos en los que se precisa una planificación

a corto plazo y que, en consecuencia, imponen una continua re-planificación de tareas y

recursos. Las soluciones ofrecidas para estos sistemas tienen como principal propósito

el distribuir la carga de trabajo entre los agentes disponibles, aplicando heurísticas

eminentemente básicas que consideran, tan sólo, el estado actual del entorno en cuestión.

Este rasgo puede apreciarse en la idiosincrasia de los centros de llamadas multi-agente

y multi-tarea altamente dinámicos.

Por otro lado, podemos toparnos con una variedad de entornos más estables y que,

como resultado, permiten trabajar con ventanas de planificación a más largo plazo.

Este tipo de entornos se puede descomponer, a su vez, en diversos grupos. Así pues,
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existen entornos en los que la lista de tareas (pool en inglés) es fija y conocida a priori

por todos los agentes, como podría ser el caso del problema clásico de la planificación

de tareas (scheduling, en inglés). También, hay entornos en los que una única tarea

es asignada a cada agente durante un largo periodo de tiempo, como puede ser el caso

del problema de asignación de trabajos (job assignment problem, en inglés). En otros

casos, los agentes son asignados a patrones de tareas en base a sus habilidades, en lugar

de ligarlos a tareas concretas (véase pattern-based scheduling, en inglés). De forma

análoga, podemos incluir en este bloque a los centros de llamadas más estables (por

ejemplo, aquellos que están destinados a servicios muy específicos como ocurre con los

centros de soporte técnico).

De esta forma, podemos afirmar que todos los casos presentados reflejan una misma

característica común: se trata de entornos estables y/o prefijados y que, por tanto,

permiten que las heurísticas puedan ser más complejas y se tomen más tiempo a la

hora de ofrecer una solución factible.

Enlazando con las ideas anteriores, este trabajo aborda los entornos encasillados

en el primer grupo de variantes; dicho con otras palabras, vamos a proponer una solu-

ción para entornos dinámicos (aunque nos centraremos esencialmente en el caso de

uso del centro de llamadas dinámico multi-agente y multi-tarea) basada en algoritmos

predictivos y meméticos paralelos, utilizando una ventana temporal adaptativa.

La Tabla 7.1 resume algunas características fundamentales de los entornos descritos

en los párrafos anteriores, en función de la ventana temporal considerada.

Table 7.1: Comparativa del problema de distribución de esfuerzo en función del tamaño
de la ventana.
Tam. de la ventana Complejidad Tiempo de respuesta Adaptabilidad Rendimiento Uso de CPU

Corto plazo baja bajo media medio bajo
Medio plazo alta medio alta alto alto
Largo plazo media alto baja bajo medio

La figura 7.1 muestra dónde se posiciona nuestro mecanismo de ventana adaptativa:
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Figure 7.1: Mecanismo de ventana adaptativa.

La hipótesis que subyace en la solución propuesta puede resumirse como: “en sis-

temas multi-agente altamente dinámicos es preferible hacer planificaciones más exactas

a medio plazo (asumiendo un cierto ruido) que hacerlas de peor calidad, reiteradamente,

a corto plazo”.

Y es que las heurísticas ad-hoc consideran el estado actual del sistema pero, debido

a restricciones temporales, tienen que hacer operaciones muy simples para después

enrutar cada tarea hasta al agente correspondiente (o grupos de agentes), en un tiempo

cercano al real. Sin embargo, si conseguimos hacer predicciones de estados futuros

a medio plazo con suficiente exactitud, podemos aplicar técnicas más complejas que

permiten obtener soluciones suficientemente precisas para dichos estados.

Obviamente, nos estamos perdiendo algunas “fotos” de estados intermedios por el

camino, pero si los “saltos” son suficientemente pequeños, podemos suponer una cierta

estacionalidad en la que el cambio del sistema es mínimo y una misma solución es,

potencialmente, factible durante ese intervalo. Dependiendo del dinamismo del sistema,

los intervalos deben tener mayor o menor amplitud y pueden ser automáticamente

determinados en función de la variabilidad de las predicciones (error en t-v, siendo v el

tamaño de la ventana de predicción expresado en segundos).
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Motivación y Objetivos Principales

El problema de la distribución de esfuerzo en sistemas multi-agente es un tema atrac-

tivo y desafiante a nivel de investigación, no sólo desde un punto de vista técnico, sino

también desde una perspectiva de negocio. La eminente complejidad de este problema

hace que sea aún más interesante y un miembro sólido dentro de la clase de problemas

NP-duros. Otra de las razones para analizar este problema es que se detecta en mu-

chos escenarios de nuestra vida cotidiana y es muy relevante para muchas aplicaciones

industriales.

Visto desde un ángulo de computación paralela, este problema también es tentador

ya que permite realizar un procesamiento paralelo de forma inherente. De esta forma,

las tareas se pueden distribuir a través de varios nodos de procesamiento.

Bajo el punto de vista de la inteligencia artificial, este problema también es muy mo-

tivador porque involucra muchos campos, que van desde técnicas de predicción derivadas

de la teoría de aprendizaje automático, hasta algoritmos de optimización que utilizan

técnicas de mantenimiento de la diversidad (computación evolutiva) y otros sistemas

de búsqueda local como el enfriamiento simulado o la búsqueda tabú.

El objetivo principal de este trabajo consiste en proporcionar una solución para re-

alizar una correcta distribución de esfuerzo en sistemas multi-agente dinámicos basados

en arquitecturas de pizarra. Por lo tanto, se ha de proporcionar un método predic-

tivo eficiente, con el fin de predecir la situación real en la siguiente ventana de trabajo

(futuro estado del sistema) y también se ha de realizar un algoritmo de optimización

adaptativo con el propósito de determinar la asignación correcta <tarea-agente>.
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Figure 7.2: Ejemplo de una arquitectura de pizarra con 8 agentes.

Descripción del problema

Un centro de llamadas (CLL) es una oficina centralizada destinada a recibir y transmitir

vastos volúmenes de llamadas a través del teléfono. En un CLL, el flujo de llamadas se

suele descomponer en tráfico entrante y saliente. En este trabajo, nos centraremos en

el tráfico entrante pues, a diferencia del saliente, no está planificado. El tráfico entrante

se modela y clasifica en grupos de llamadas (GLL).

Cuando el CLL tiene más de un GLL y diversos operadores para atender las lla-

madas, se denomina CLL multi-agente y multi-tarea (CLLMM, en inglés, multi-skill

call centre). En un CLLMM, podemos encontrar n llamadas de clientes agrupadas en

k tipos de llamadas (GLL) y m operadores o agentes dispuestos a contestar dichas

llamadas, siempre y cuando tengan las habilidades necesarias para atender esos GLLs.

La Figura 1 muestra la relación existente entre llamadas, GLL y agentes.

Dando un poco de rigor a la formulación del problema, podemos distinguir los

siguientes elementos dentro de un CLLMM:
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Figure 7.3: Esquema del tráfico entrante en un CLLMM.

• un conjunto finito de n llamadas (ci) de clientes C = {c1, c2, ..., cn}.

• un conjunto finito de k grupos de llamadas GLL = {gll1, gll2, ..., gllk}, donde

k ≤ n cuando cada GLL tiene, al menos, una llamada asignada.

• un conjunto finito de m agentes A = {a1, a2, ..., am}.

• un conjunto finito de k habilidades de agente S = {s1, s2, ..., sk}, donde cada

habilidad si representa la capacidad que tiene para atender el correspondiente

GLL glli (mismo subíndice): s1 ∼ gll1, s2 ∼ gll2, ..., sk ∼ gllk.

• un conjunto finito de d perfiles de habilidad P = {P1, P2, ..., Pd}, donde cada

perfil de habilidad Pi es un conjunto finito de l habilidades de agente.

• un conjunto de n operaciones (ejecución o procesamiento de cada llamada Ci) O =

{o1, o2, ..., on}, donde cada operación tiene asociada un tiempo de procesamiento
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que depende del GLL: T = {t1, t2, ..., tk}.

Además, la solución debe satisfacer las siguientes condiciones:

• en O se define una relación binaria A que representa la precedencia entre opera-

ciones. Si (oi, oj)εA, entonces o1 tiene que realizarse antes que o2.

• cada agente ai tiene asociado un subconjunto finito no nulo de b elementos P b ⊆

P que contiene las habilidades que tiene ai para atender diversos GLLs: ai ∼

{P 1, P 2, ..., P b}.

• un mismo perfil P i puede estar asignado a varios agentes (los que tengan esas

destrezas) y, asimismo, cada agente ai puede tener diferentes perfiles en función

de sus destrezas P b ⊆ P , aunque sólo puede tener un único perfil asignado en un

instante t dado < ai, Pj >t.

• cada solución debe respetar las restricciones duras del problema e intentar evitar

violar las restricciones blandas.

El objetivo consiste en obtener la mejor asignación < ai, Pj >t para cada ventana

temporal y que respete las restricciones del problema.

Para evaluar la calidad de cada solución obtenida, vamos a considerar el nivel de

servicio que se define como el porcentaje de llamadas atendidas antes de una determi-

nada cantidad de tiempo de espera (en nuestro caso será de 20 segundos).

Como se puede intuir, la complejidad de este problema es enorme, pues no sólo

tenemos una explosión combinatoria entre perfiles de habilidad, número de llamadas y

de agentes, sino que además tenemos poco tiempo para dar una respuesta.
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Detalle de la Solución

Anteriormente hemos visto cómo las técnicas de planificación a corto plazo distribuyen

vorazmente (sin planificación) las tareas entre los agentes disponibles que pueden proce-

sar dichas tareas, mientras que las técnicas de planificación a largo plazo trabajan con

un flujo estable en el tiempo (algo que está fuera del ámbito de este trabajo).

De esta manera, las estrategias de planificación a corto plazo distribuyen el esfuerzo

sin tener en cuenta el estado del sistema en el futuro (sólo la situación global actual),

haciendo que las asignaciones tarea-agente sean inadecuadas en el medio y largo plazo.

Por el contrario, las estrategias de planificación a largo plazo proporcionan solu-

ciones óptimas para un determinado estado del sistema, requiriendo tiempos de cálculo

más largos. Sin embargo, si el sistema no es muy estable, podríamos tener serios prob-

lemas en el futuro, debido a que una configuración óptima para el estado actual del

sistema puede no ser la mejor opción para un futuro punto en el tiempo.

La hipótesis subyacente de este trabajo es que la mayoría de sistemas multi-

agente dinámicos requieren asignaciones precisas de las tareas entrantes a los agentes

disponibles más adecuados, teniendo en cuenta una ventana temporal auto-adaptativa

en lugar asignaciones no planificadas continuamente o asignaciones estáticas en el

tiempo.

En sistemas muy dinámicos, es preferible hacer una planificación a medio plazo,

asumiendo cierto ruido en las predicciones, que hacer una mala planificación de forma

repetida en el tiempo.

Básicamente, tenemos que ampliar (o reducir) la ventana de trabajo observada y

pronosticar el estado real del sistema en un punto de tiempo futuro con el fin de aplicar

algoritmos de búsqueda más sofisticados, los cuales pueden superar a las técnicas de

planificación a corto plazo convencionales.

Ahí es donde surge la necesidad de realizar una predicción exacta de un estado del
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sistema futuro a medio plazo. Posteriormente, un potente algoritmo de búsqueda debe

encontrar una solución viable para dicho estado futuro, asegurando de este modo un

justo equilibrio entre diversidad (exploración) e intensidad (explotación).

El módulo de predicción se basa en una red neuronal que implementa un novedoso

algoritmo de aprendizaje, mientras que el módulo de optimización se basa en un algo-

ritmo memético paralelo que utiliza un algoritmo meta-genético externo para calibrar

automáticamente los parámetros internos del algoritmo memético paralelo en función de

la dinámica del sistema. A lo largo de esta sección, vamos a ir detallando rápidamente

los componentes de nuestro enfoque.

Módulo predictivo

El módulo predictivo trata de predecir las variables que no están prefijadas en nuestro

problema. En este caso, nos referimos a las llamadas entrantes y abandonos, y al

número de agentes disponibles.

La forma de operar de este módulo consiste en realizar estimaciones del número de

llamadas entrantes que habrán llegado a lo largo del próximo intervalo y de los aban-

donos que habrá para que, sumándole el número de llamadas encoladas, obtengamos el

total de llamadas de cada tipo que tendremos en un estado futuro.

Asimismo, predeciremos el número de agentes disponibles en esos estados futuros

(esta tarea es más fácil ya que sabemos los horarios a priori y sólo hay que predecir

pequeños desvíos).

El algoritmo que proponemos se basa en Rprop y las modificaciones que hemos

realizado quedan reflejadas en el siguiente pseudo-código:

si (∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

> 0)⇒
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⇒



∆ij(t) = min(γ ·∆ij(t− 1),∆max)

∆wij(t) =


∆ij(t) si (∂Λε(t)

∂wij
< 0)

−∆ij(t) si (∂Λε(t)
∂wij

> 0)

0 otro caso

wij(t+ 1) = wij(t) + ∆wij(t)

∂Λε(t−1)
∂wij

= ∂Λε(t)
∂wij

(7.1)

en caso contrario, si (∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

< 0)⇒
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⇒



∆ij(t) = max(∆ij(t−1)
µ

,∆min)

∆wij(t) =



−∆wij(t−1)
2 si


(Λε(t) > Λε(t− 1))

&&

(Λε(t) < α · Λε(t− 1))

−∆wij(t− 1) si Λε(t) > α · Λε(t− 1)

0 otro caso

wij(t+ 1) =



wij(t)− ∆wij(t−1)
2 si


(Λε(t) > Λε(t− 1))

&&

(Λε(t) < α · Λε(t− 1))

wij(t)−∆wij(t− 1) si Λε(t) > α · Λε(t− 1)

wij(t) otro caso

∂Λε(t)
∂wij

= 0

(7.2)

en caso contrario, si (∂Λε(t)
∂wij

· ∂Λε(t−1)
∂wij

= 0)⇒
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⇒



∆ij(t) = ∆ij(t− 1)

∆wij(t) =


∆ij(t) si (∂Λε(t)

∂wij
< 0)

−∆ij(t) si (∂Λε(t)
∂wij

> 0)

∆ij(t− 1) otro caso

wij(t+ 1) = wij(t) + ∆wij(t)

∂Λε(t−1)
∂wij

= ∂Λε(t)
∂wij

(7.3)

Hay que destacar que nuestro algoritmo puede caer en óptimos locales pero se

puede entrenar de forma rápida y sencilla.

Módulo de optimización heurística

El módulo de optimización heurística parte de las predicciones del módulo predictivo.

Como se ha comentado, el módulo de optimización consiste en un algoritmo memético

paralelo. Este algoritmo memético está formado, a su vez, por islas donde cada isla es

un algoritmo genético con una búsqueda local sencilla que refina los resultados cada

cierto número de generaciones.

Las siguientes subsecciones explican cómo está desarrollado el algoritmo memético

(a nivel de operadores) de cada isla, así como la búsqueda local que refina las soluciones

en cada isla. Por último, se explica brevemente cómo funciona el algoritmo memético

paralelo compuesto por dichas islas.
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Figure 7.4: Ejemplo de codificación.

Codificación

El primer paso cuando se está diseñando un algoritmo memético, consiste en buscar

una representación y codificación para el problema. Hay diversas formas de represen-

tar este problema ya que el cromosoma puede contener las tareas o los agentes, pero

propondremos una representación de tipo entero donde cada posición del cromosoma

representa a un agente y su contenido el perfil que tiene asignado en ese momento de

entre los posibles perfiles que podría tener.

Si ponemos en cada posición la tarea y en el contenido cuántos agentes debería

tener, también sería una representación viable pero nos permitiría tener menos flexi-

bilidad a la hora de jugar con los perfiles de habilidad de cada agente. En cambio,

los cromosomas serían de mayor tamaño ya que suele haber más agentes que tipos de

tareas. No obstante, recomendamos fehacientemente estudiar el entorno en cuestión si

se tienen pocos grupos e infinidad de agentes, en cuyo caso recomendamos la segunda

opción. La opción que usaremos en este trabajo será la primera.

La Figura 7.4 muestra un ejemplo ficticio, a modo de ejemplo, con 10 llamadas

(c0 − c9) agrupadas en 3 GLLs distintos (gll0 − gll2), 5 agentes (a0 − a4) y 4 perfiles

de habilidad (P0−P3), donde P0 = {s0, s1}, P1 = {s1}, P2 = s2 y P3 = {s1, s2}. Ahora,

suponga que a0 ∼ {P0, P1}, a1 ∼ {P0, P2}, a2 ∼ {P1, P3}, a3 ∼ {P2, P3} y a4 ∼ {P0, P1}.

Dada esta configuración y teniendo en cuenta que cada agente ai sólo pueden tener

asignado un perfil Pi en un instante dado; una solución factible podría ser la mostrada

en la Figura 7.4.

235



Función de evaluación

La función de evaluación, como es bien sabido, es el mecanismo que permite evaluar la

calidad de una solución dada. Esta función guía la búsqueda y decide qué individuos

deben ser seleccionados para la próxima generación (de hecho, también depende de la

política de reemplazo). La función de evaluación está íntimamente ligada al problema

y es muy importante definirla correctamente.

La función de evaluación que proponemos está inspirada en la estimación del nivel

de servicio total, aunque nosotros consideramos la prioridad de cada grupo ponderada

por la carga real y verificamos si las restricciones se satisfacen o no. El nivel de servicio

total modificado puede expresarse como:

NiveldeServicioTotal =
k∑
i=0

(Pri ·NSi(γi, αi)) · µ {NS : <X[0, 1]X[0, 1]→ [0, 1]}

(7.4)

donde k hace referencia al número de GLLs, µ es un factor de normalización

( 1∑k

i=0 Pri
), Pri es la prioridad del glli ponderado por su número de llamadas, y NSi se

define como el nivel de servicio del glli:

NSi(γi,mi) = 1− P (Agentes_ocupados) · e−(γi−mi)
τi
β (7.5)

dado que:

P (Agentes_ocupados) =
1 + γi −mi

mi

·
γi−1∑
ζ=0

(γi − 1)...(ζ + 1)
mγi−ζ−1
i

−1

(7.6)

P(Agentes ocupados) es la probabilidad de que todos los agentes con esa habilidad

estén ocupados, γi i es la carga entrante del glli (ni · τi), mi es el número de agentes

asignados en el cromosoma al glli, τi es el tiempo de procesamiento medio de una

llamada del glli, y β es el tiempo, expresado en segundos, en el que, si la llamada se
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atiende antes, se considera como exitosa, bajo un punto de vista de atención al cliente.

Adicionalmente, consideramos que puede haber restricciones duras y blandas en

función de la relevancia de las mismas (en nuestro caso vendrán dadas por las unidades

de negocio). Estas restricciones van ligadas a las tareas, a los agentes, al tiempo y

acciones que pueden ser no deseadas.

Así pues, ni el algoritmo ni sus operadores podrán violar las restricciones duras (e.g.

un agente no puede tener habilidades asignadas que no estén dentro de su conjunto de

habilidades potenciales) y se penalizarán en mayor o menor medida si incumplen alguna

restricción débil (e.g. en la medida de lo posible, no moveremos agentes de un grupo a

otro de menor prioridad, si el de mayor prioridad no ha alcanzado un nivel mínimo de

nivel de atención deseado).

Como las restricciones débiles nos vendrán dadas por reglas de negocio, podemos

establecer niveles de restricciones y, dentro cada nivel, un orden. Para el salto entre

niveles se ha empleado una función logarítmica, siendo el nivel 0 el de máxima prioridad

y el nivel j, el de menos. Con esto, nuestra función de evaluación queda como:

f = (NiveldeServicioTotal − penalizaciones) f : [0, 1]x[0, 1]→ [−1, 1] (7.7)

Finalmente, vamos a introducir el concepto de evaluación parcial para acelerar

las evaluaciones, sobre todo, al ejecutar la búsqueda local. En cada generación, se

aplicará la función f pero en el resto de ocasiones, sólo tenemos que recalcular los

grupos afectados por una mutación o por la generación de un nuevo vecino (se verá más

claro cuando veamos la búsqueda local).
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Operadores genéticos y otros parámetros

A continuación, vamos a detallar la configuración de los operadores genéticos que se

han empleado que, aún siendo básicos, han conseguido buenos resultados como veremos

más adelante. Tras un estudio empírico, los operadores genéticos y demás parámetros

quedarían de la siguiente forma:

• Población: cada población está formada por 20 individuos.

• Inicialización: para la creación de la primera población, todos los individuos

se generan aleatoriamente. En posteriores intervalos de tiempo (el algoritmo se

ejecuta de forma continua en el tiempo en el entorno de producción y no para

un intervalo concreto como el que se presenta en el estudio), tomaremos el mejor

individuo obtenido en el anterior intervalo (la variabilidad entre intervalos puede

ser relativamente pequeña), y el resto de individuos se generan aleatoriamente y

se refinan con una búsqueda local para no partir de soluciones muy pobres.

• Selección: con objeto de ver qué individuos pasan a la siguiente generación, hemos

decidido aplicar t torneos binarios.

• Cruce: el siguiente paso consiste en producir una nueva generación de individ-

uos. Específicamente, se considera que los hijos heredan los genes coincidentes en

ambos padres y que el resto los reciben de forma aleatoria.

• Mutación: con el objetivo de causar pequeños cambios en el cromosoma y man-

tener de forma explícita la diversidad, y evitar una convergencia prematura, se

provoca una perturbación sobre el 3% de los genes del cromosoma.

• Política de reemplazo: hay que decidir qué individuos se incorporan o reinsertan

en la población tras una generación. Para ello, se emplea un esquema estacionario
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especial. Reemplazamos los peores individuos de la población por los dos mejores

(elitismo) con una probabilidad de 0.7, mientras que con una probabilidad de 0.3

cogemos el mejor y el cromosoma más diferente a éste.

• Condición de parada: el algoritmo se ejecuta durante n segundos (tantos como

dure la ventana, en nuestro caso n=300).

Búsqueda local

La búsqueda local es una meta-heurística que se usa para resolver problemas de opti-

mización. La búsqueda local comienza por una solución candidata y, de forma iterativa,

se va moviendo por el espacio de soluciones hacia otras soluciones vecinas, generando su

vecindario. Para llevar a cabo esta tarea, se tiene que definir una relación de vecindad.

En nuestro caso, diremos que dos soluciones son vecinas cuando sólo hay un gen de

diferencia entre ellas.

El siguiente pseudocódigo ilustra el algoritmo de búsqueda local que se aplica cada

10 generaciones sobre los 5 mejores individuos (recuerde que la función de evaluación

se refiere a la parcial):
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void Búsqueda_Local (Cromosoma & solución_candidata)

begin

Cromosoma mejor_solución = solución_candidata;

Cromosoma vecino = solución_candidata;

for i← 0 to solución_candidata.tam()− 1 do

Agente a = vecino.obtieneAgente(i);

for j ← 0 to a.obtiene_número_perfiles()− 1 do
vecino.cambia_perfil(i,j);//perfil j para el agente i

if (vecino.fitness() > mejor_solución.fitness()) then

mejor_solución = vecino;

end

vecino = mejor_solución;

j++;

end

solución_candidata = mejor_solución;

i++;

end

end
Algorithm 7: Pseudo-código de la búsqueda local propuesta.

Paralelizando el algoritmo memético

Ya sólo nos queda paralelizar el algoritmo y lo vamos a conseguir gracias a un modelo

de islas de la siguiente forma:

• Topologías: usaremos una topología de islas en esquema de anillo, de hub (todos

con todos) o en estrella con una población maestra y cuatro subordinadas que

cada cierto tiempo intercambian algunas de sus soluciones con la maestra y ésta
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a su vez les envía otras soluciones.

• Migración: cada isla enviará un porcentaje variable de sus mejores soluciones a

la isla correspondiente.

• Reemplazo: aplicaremos la misma filosofía del memético simple.

• Frecuencia de migraciones: cada 50 generaciones, la isla maestra bloquea asín-

cronamente al resto de islas subordinadas para pedirles, a cada una, un porcentaje

variable de sus mejores soluciones.

También se ha desarrollado un algoritmo meta-genético que tiene en cada gen de

su cromosoma los parámetros arriba indicados, con una amplia variedad de configura-

ciones.
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Evaluación de resultados

En esta sección, vamos a analizar los resultados obtenidos al aplicar la configuración

final propuesta en este trabajo, combinando el módulo de predicción con el módulo de

optimización y haciendo uso de la ventana temporal auto-adaptativa. Pero antes de

analizar el funcionamiento del sistema en su globalidad, vamos a estudiar cada módulo

por separado.

De esta manera, vamos a ver los resultados del módulo predictivo para 5 GLLs

y 91 días de datos históricos para validar la bondad del modelo. Para realizar la

comparativa, utilizaremos los paquetes RNNS y RForecast de R y compararemos con

15 técnicas de reconocido prestigio dentro del mundo de los modelos predictivos. Estas

técnicas se clasifican en series temporales, modelos de arima, redes neuronales y modelos

de regresión lineales y no lineales. Las Tablas 7.2 - 7.6 muestran los resultados medios

para 50 ejecuciones.

Asimismo, vamos a ver los resultados que se obtienen aplicando otras técnicas de

renombre en el ámbito de la meta-heurística, como son el enfriamiento simulado, la

búsqueda local iterativa y la búsqueda en entorno variable. Para ello, hemos aplicado

estas técnicas sobre dos conjuntos diferentes de datos (dos ventanas de 300 segundos

de amplitud comprendidas entre las 12:40 y las 12:45): uno de dificultad media (un

día normal) y otro tomando un día gran volumen de llamadas y alta variabilidad (ver

Figura 7.5).

Todas las ejecuciones han sido realizadas en un servidor Sun Fire E4900 (2 proce-

sadores para el modulo predictivo, otro para las interfaces y preprocesado, otros 5 para

los algoritmos y los 4 restantes se han dejado para otras aplicaciones) con 96GB RAM.

Es importante destacar que todos los datos provienen de fuentes reales del entorno

de producción del CLL de Telefónica.

La Tabla 7.7 ilustra los resultados obtenidos, tras 50 ejecuciones, para las dos
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Método Mín. Máx. MAE Desv. Correlación
Error Error

uRprop -76 123 4.533 8.288 0.937
Suavizado Exponencial -150 127 4.777 8.470 0.934

Series Temporales Simples -160 129 4.767 8.508 0.934
Series Temporales Estacionarias -161 129 4.767 8.508 0.934
Series Temporales Tendencias -161 128 4.768 8.509 0.934

Arima (0.1.3)(0.0.0) -154 129 4.779 8.489 0.934
Arima (0.1.5)(1.0.1) -153 128 4.781 8.477 0.934

Backprop -123 128 4.606 8.221 0.938
BackpropMomentum -90 130 4.58 8.219 0.938

Rprop -105 127 4.619 8.165 0.939
Quickprop -99 128 4.639 8.254 0.938

BackpropChunk -90 132 4.579 8.213 0.938
RBF -68 159 4.832 10.698 0.892

BackpropWeightDecay -95 127 4.574 8.314 0.938
Regresión Logística -118 120 4.905 8.471 0.920
Regresión Lineal -127 119 4.956 8.499 0.918

Table 7.2: Resultados para el GLL-1: Método, error mínimo, error máximo, error
absoluto medio, desviación típica y correlación de Pearson.

Método Mín. Máx. MAE Desv. Correlación
Error Error

uRprop -32 36 3.244 5.360 0.968
Suavizado Exponencial -40 39 3.356 5.507 0.967

Series Temporales Simples -36 39 3.405 5.567 0.966
Series Temporales Estacionarias -36 39 3.406 5.509 0.966
Series Temporales Tendencias -40 39 3.356 5.507 0.967

Arima (0.1.3)(0.0.0) -36 39 3.402 5.564 0.966
Arima (0.1.5)(1.0.1) -37 39 3.397 5.554 0.966

Backprop -35 39 3.259 5.432 0.968
BackpropMomentum -37 37 3.257 5.344 0.968

Rprop -32 37 3.273 5.339 0.968
Quickprop -33 36 3.319 5.39 0.968

BackpropChunk -37 37 3.265 5.333 0.968
RBF -40 136 3.951 6.403 0.947

BackpropWeightDecay -34 37 3.255 5.385 0.968
Regresión Logística -32 39 3.853 5.958 0.961
Regresión Lineal -32 40 3.899 6.106 0.952

Table 7.3: Resultados para el GLL-2: Método, error mínimo, error máximo, error
absoluto medio, desviación típica y correlación de Pearson.
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Método Mín. Máx. MAE Desv. Correlación
Error Error

uRprop -19 29 2.368 3.960 0.948
Suavizado Exponencial -24 29 2.417 4.036 0.946

Series Temporales Simples -24 30 2.445 4.062 0.946
Series Temporales Estacionarias -24 30 2.445 4.063 0.945
Series Temporales Tendencias -24 29 2.417 4.036 0.946

Arima (0.1.3)(0.0.0) -24 30 2.444 4.060 0.946
Arima (0.1.5)(1.0.1) -25 29 2.44 4.052 0.946

Backprop -20 29 2.436 4.002 0.947
BackpropMomentum -20 29 2.394 3.963 0.948

Rprop -21 28 2.403 3.948 0.948
Quickprop -19 28 2.457 4.038 0.946

BackpropChunk -22 28 2.419 2.985 0.947
RBF -24 45 3.17 6.538 0.851

BackpropWeightDecay -20 29 2.374 3.958 0.948
Regresión Logística -33 28 2.880 4.580 0.942
Regresión Lineal -32 28 2.962 4.624 0.943

Table 7.4: Resultados para el GLL-3: Método, error mínimo, error máximo, error
absoluto medio, desviación típica y correlación de Pearson.

Método Mín. Máx. MAE Desv. Correlación
Error Error

uRprop -20 20 1.728 3.129 0.948
Suavizado Exponencial -22 21 1.732 3.183 0.947

Series Temporales Simples -22 21 1.75 3.208 0.946
Series Temporales Estacionarias -22 22 1.749 3.203 0.946
Series Temporales Tendencias -22 21 1.732 3.183 0.947

Arima (0.1.3)(0.0.0) -22 21 1.748 3.203 0.946
Arima (0.1.5)(1.0.1) -22 21 1.744 3.198 0.946

Backprop -20 20 1.836 3.178 0.947
BackpropMomentum -20 19 1.766 3.122 0.948

Rprop -21 19 1.761 3.116 0.949
Quickprop -19 21 1.883 3.217 0.945

BackpropChunk -21 20 1.856 3.195 0.946
RBF -21 34 2.256 5.111 0.855

BackpropWeightDecay -21 20 1.778 3.132 0.948
Regresión Logística -21 29 1.993 3.239 0.930
Regresión Lineal -20 30 1.949 2.631 0.928

Table 7.5: Resultados para el GLL-4: Método, error mínimo, error máximo, error
absoluto medio, desviación típica y correlación de Pearson.
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Método Mín. Máx. MAE Desv. Correlación
Error Error

uRprop -10 13 0.976 1.353 0.777
Suavizado Exponencial -12 18 0.981 1.804 0.602

Series Temporales Simples -12 18 0.981 1.804 0.602
Series Temporales Estacionarias -12 18 0.981 1.803 0.603
Series Temporales Tendencias -12 18 0.981 1.804 0.603

Arima (0.1.3)(0.0.0) -12 18 0.981 1.804 0.603
Arima (0.1.5)(1.0.1) -12 18 0.981 1.803 0.603

Backprop -5 17 0.948 1.694 0.617
BackpropMomentum -5 17 0.986 1.741 0.588

Rprop -5 18 0.778 1.762 0.574
Quickprop -4 18 1.079 1.802 0.548

BackpropChunk -5 17 0.967 1.726 0.598
RBF -5 18 1.002 1.773 0.567

BackpropWeightDecay -5 16 0.966 1.688 0.620
Regresión Logística -8 13 1.084 1.798 0.748
Regresión Lineal -8 13 1.1 1.823 0.745

Table 7.6: Resultados para el GLL-5: Método, error mínimo, error máximo, error
absoluto medio, desviación típica y correlación de Pearson.

Figure 7.5: Número de llamadas entrantes durante la hora más compleja del día 9 de
septiembre de 2009.
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Algoritmo Mejor solución Peor solución Media Desv. típica
Medio Difícil Medio Difícil Medio Difícil Medio Difícil

Algoritmo memético paralelo 0.834 0.818 0.823 0.783 0.829 0.809 0.003 0.002
Algoritmo memético simple 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001
Búsqueda local iterativa 0.768 0.728 0.755 0.722 0.763 0.725 0.002 0.003

Búsqueda entorno variable 0.790 0.727 0.766 0.723 0.775 0.724 0.005 0.001
Enfriamiento simulado 0.782 0.721 0.773 0.709 0.779 0.716 0.001 0.003

Table 7.7: Resultados obtenidos por cada meta-heurística en 50 ejecuciones para dos
instancias de media y alta dificultad.

instancias del problema consideradas. Dicha tabla muestra la mejor y peor solución

obtenidas por cada una de las técnicas estudiadas, así como la media y desviación

típica de las 50 ejecuciones.

En la Tabla 7.7, se puede apreciar cómo el algoritmo memético paralelo obtiene

mejores soluciones tanto en sus valores máximo y mínimo, como en media, comparán-

dolo con el resto de técnicas. No sólo se trata de una técnica que nos permite alcanzar

mejores soluciones en el espacio de búsqueda, sino que también nos permite obtener

soluciones más estables, convirtiéndose en la técnica más robusta de las estudiadas.

El propio algoritmo memético simple, ya mejora al resto de técnicas en ambas

instancias del problema, sobre todo para el caso más complejo.

Otro hecho a destacar radica en que a medida que se complica el problema, el

paralelismo es mucho más importante ya que, aunque normalmente tenemos muchos

agentes para atender llamadas, cuando los recursos son más escasos (en ciertas franjas

horarias) es vital tener un algoritmo que permita una mejor gestión de distribución de

la carga de trabajo. Precisamente, en esos puntos (p.e. alrededor de las 12:40) es donde

hay que hacer un mayor hincapié y donde la robustez se hace más necesaria.

Con una mejor distribución de carga de trabajo, no sólo tenemos clientes más

satisfechos, sino que la optimización conlleva a que los trabajadores también se sentirán

mejor tratados (no sobreexplotados) y podrán realizar su trabajo de mejor agrado.

Por último, vamos a ver el funcionamiento global del sistema combinando los módu-
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Algoritmo Nivel de servicio real Desviación estándar Eficacia
Nuestro enfoque paralelo 0.987 0.016 100
Nuestro enfoque simple 0.941 0.020 95.339

ED-SBR 0.901 0.043 91.286
SBR 0.860 0.056 87.132

KOOLE 0.733 0.029 74.265

Table 7.8: Comparativa a lo largo del tiempo de nuestro enfoque simple y paralelo con
otros algoritmos relevantes del mundo del call center.

los predictivo y módulo de optimización. La Tabla 7.8 resume los resultados obtenidos

al ejecutar durante un día nuestro enfoque global paralelo, en comparación con otras

técnicas convencionales del mundo del call center (ED-SBR y SBR clásico, algoritmo

de Koole).

Vemos que nuestro enfoque es mucho más adecuado para entornos dinámicos como

el call center que las técnicas convencionales, dado que éstas no realizan una plani-

ficación a largo plazo, sino que consideran el estado actual usando heurísticas más o

menos complejas.

Para facilitar la visualización de los resultados de la tabla, la Figura 7.6 muestra el

detalle de los resultados obtenidos por cada técnica a lo largo del día. Dichos resultados

representan el nivel de servicio real obtenido en cada punto del día.

Es muy importante obtener resultados cuasi-óptimos para ventanas de trabajo ais-

ladas, pero no podemos obviar que nuestro enfoque global se está ejecutando de forma

continua, por lo que las transiciones entre los estados del sistema deben tenerse en

cuenta. Nuestro enfoque demuestra que no sólo es el más adecuado para una determi-

nada ventana temporal fija, sino que es el más adecuado a lo largo del día.
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Figure 7.6: Nivel de servicio ofrecido por las diferentes técnicas de asignación de esfuerzo
en el call center para un día de campaña. Eje X representa el tiempo y el eje Y representa
el nivel de servicio real.

Conclusiones, Contribuciones y Trabajo Futuro

Conclusiones

En este trabajo hemos presentado un nuevo enfoque para resolver el problema de

distribución de esfuerzo en centros de llamadas multi-agente y multi-tarea altamente

dinámicos, mediante la combinación de algoritmos predictivos y algoritmos meméticos

paralelos.

Hemos visto que este tipo de centros de llamadas requiere de técnicas adaptativas,

pues se trata de un entorno extraordinariamente cambiante. El uso de algoritmos

meméticos, los cuales son mucho más complejos que las técnicas ad-hoc, nos ayuda a

obtener soluciones más precisas y robustas, siempre y cuando dichas soluciones vayan

acompañadas de una adecuada predicción de las tareas a realizar.
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Se ha demostrado que con un sistema de ventana de trabajo temporal auto-

adaptativa, podemos superar las tradicionales técnicas de planificación a corto y largo

plazo del mundo del call center.

Hemos propuesto una red neuronal basada en un novedoso algoritmo de apren-

dizaje para realizar las predicciones oportunas y un algoritmo memético paralelo como

mecanismo de optimización heurística que permitía mejorar los resultados obtenidos

por otras técnicas reconocidas dentro del mundo de los centros de llamadas. Además,

dicho algoritmo constaba de un meta-agoritmo genético que le permitía calibrar au-

tomáticamente todos los parámetros de forma correcta.

En este estudio, se han presentado diferentes pruebas exhaustivas sobre diversos

conjuntos de datos de diferente dificultad que demuestran que nuestro enfoque no sólo

es el más potente de forma unificada, sino que sus propios módulos (predicción y opti-

mización) son de por sí más potentes que otras alternativas del estado del arte.

Por último, queremos destacar que nuestro enfoque ha sido probado en un entorno

real de producción (Telefónica).

Contribuciones

Las contribuciones de este trabajo pueden concebirse desde diversas perspectivas, aunque

la principal aportación es la presentación de un nuevo enfoque para el problema de dis-

tribución de esfuerzo, que fusiona predicciones realistas con una adecuada optimización,

considerando un mecanismo de ventana de trabajo adaptativa. También aplicamos este

enfoque a un entorno de producción real (Telefónica), superando a otras técnicas exis-

tentes de centros de llamadas.

Nuestro enfoque también nos permite trabajar con un nivel de granularidad menor

(grano fino) que los algoritmos de planificación a corto plazo (grano grueso), debido a

que nuestro algoritmo de búsqueda tiene más tiempo para encontrar una solución que
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las técnicas voraces convencionales, gracias a las predicciones a medio plazo que realiza

el módulo predictivo.

A continuación, presentamos otras contribuciones técnicas de este trabajo:

• Este trabajo propone un enfoque escalable y paralelizable para un problema NP-

duro del mundo real.

• Se describe un método de ventana de trabajo auto-adaptativa, muy robusto que

determina la dinámica del sistema en cada momento y un modelo de Markov para

llevar a cabo las transiciones del sistema.

• Se presenta una versión mejorada del algoritmo de aprendizaje de retro-propagación

para redes neuronales.

• Se proponen políticas de migración y reemplazo novedosas para algoritmos genéti-

cos paralelos, inspiradas en otras meta-heurísticas.

• Se propone un novedoso algoritmo meta-genético para calibrar el memético par-

alelo que compone el módulo de optimización.

• También proponemos un método para evaluar las funciones fitness de forma par-

cial y así reducir los tiempos de evaluación de cada solución.

• Se aportan diversas comparativas exhaustivas de los diferentes componentes y del

enfoque global.

Por último, la contribución científica de esta tesis se refleja en las 11 publicaciones

que han sido fruto del presente trabajo de investigación:

1. Publicaciones en revistas internacionales:

(a) Millán-Ruiz, D. and Hidalgo, J.I.: Forecasting Call-Centre Arrivals. Journal

of Forecasting, Wiley, Ed. Derek W. Bunn, 2013.
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(b) Arnaldo, I., Contreras, I.; Millán-Ruiz, D., Hidalgo, J.I. and Krasnogor,

N.: Matching Island Topologies to Problem Structure in Parallel Evolution-

ary Algorithms. Soft Computing. A Fusion of Foundations, Methodologies

and Applications. Special Issue on Bio-Inspired Algorithms with Structured

Populations, Springer, 2013.

2. Publicaciones en conferencias internacionales de relevancia:

(a) Millán Ruiz, D. and Hidalgo, J.I.: Migration and Replacement Policies

for Preserving Diversity in Dynamic Environments. Proceedings of the

12th European Conference on the Applications of Evolutionary Computation

(EvoApplications 2012, Málaga, Spain, April 11-13, 2012.

(b) Millán Ruiz, D., Hidalgo, J.I.: Comparison of Metaheuristics for Work-

force Distribution in Multi-Skill Call Centres. Proceedings of the Interna-

tional Joint Conference on Computational Intelligence (ICEC 2010), Valen-

cia, Spain, October 24-26, 2010.

(c) Millán Ruiz, D., Hidalgo, J.I.: A Parallel Memetic Algorithm for Dynamic

Workload Distribution in Multi-Agents Systems. Proceedings of the 3rd

Workshop on Parallel Architectures and Bioinspired Algorithms held In con-

junction with PACT 2010, Vienna, Austria, September 11-15, 2010.

(d) Millán Ruiz, D., Pacheco, J., Hidalgo, J.I., Vélez, JL: Forecasting in a multi-

skill Call Centre. Proceedings of the 10th International Conference on Ar-

tificial Intelligence and Soft Computing (ICAISC 2010), Zakopane, Poland,

June 13-17, 2010.

(e) Millán Ruiz, D., Hidalgo, J.I.: A Memetic Algorithm for Workforce Distribu-

tion in Dynamic Multi-Skill Call Centres. Proceedings of the 10th European

251



Conference on Evolutionary Computation in Combinatorial Optimisation

(EVOCOP 2010), p. 178-189, Istanbul, Turkey, April 7-9, 2010.

(f) Meléndez, J., Lopez, B., Millán-Ruiz, D.: Probabilistic models to assist

maintenance of multiple instruments. Proceedings of the 14th IEEE In-

ternational Conference on Emerging Technologies and Factory Automation

(ETFA 2009), p. 1499-1503, Palma de Mallorca, Spain, September 22-26,

2009.

(g) Pacheco, J., Millán-Ruiz, D., Vélez, JL: Neural Networks for Forecasting in

a multi-skill Call Centre. Proceedings of the 11th International Conference

on Engineering Applications of Neural Networks (EANN 2009), p. 291-300,

London, UK, August 27-29, 2009.

(h) Martinez-Lopez, R., Millán-Ruiz, D., Martin-Dominguez, A.; Toro-Escudero,

MA: An Architecture for Next-Generation of Telecare Systems Using On-

tologies, Rules Engines and Data Mining. Proceedings of the International

Conferences on Computational Intelligence for Modelling, Control and Au-

tomation, Intelligent Agents, Web Technologies and Internet Commerce, and

Innovation in Software Engineering (CIMCA 2008), p. 31-36, Vienna, Aus-

tria, December 10-12, 2008.

3. Publicaciones en conferencias nacionales de relevancia:

(a) Millán Ruiz, D., Hidalgo, J.I.: Algoritmo memético paralelo para la distribu-

ción de esfuerzo en centros de llamadas dinámicos multi-agente y multi-tarea.

Proceedings of the 7th Spanish Conference on Meta-heuristics, Evolution-

ary Algorithms and Bioinspired Algorithms (MAEB 2010), Valencia, Spain,

September, September 8-10, 2010.
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Áreas de Investigación Futura

Por último, se proponen algunas directrices para el trabajo futuro. En primer lugar, se

recomienda el análisis de más juegos de datos, especialmente si queremos generalizar

ciertas conclusiones a otros ámbitos y otros entornos multi-agente.

Otra posible mejora implica la selección de más atributos para realizar las predic-

ciones, así como técnicas más sofisticadas para la selección de dichos atributos. En este

sentido, se deberían de analizar otras técnicas no lineales, ya que análisis de compo-

nentes principales es una técnica que realiza componentes lineales de un conjunto de

variables de entrada.

También se podría hacer un estudio más profundo del tratamiento de restricciones

que permita añadir nuevas reglas y restricciones sin impactar mucho en la función de

evaluación.

Para los niveles de dinamismo, también podríamos tener una aproximación con-

tinua (sin niveles) para aquellos sistemas multi-agente dinámicos donde los agentes no

son seres humanos de forma que no hay que preocuparse por sus derechos o restricciones

físicas. Por ejemplo, podríamos cambiar sus perfiles de habilidad en cualquier momento

sin ningún tipo de restricción legal.

Para concluir, proponemos ampliar este estudio mediante técnicas multi-objetivo

como SPEA-II o NSGA-II, dada nuestra formulación del problema.
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